• •
朱智韬1,2 , 司世景1 ,王健宗1,* , 肖京1
作者简介:
朱智韬 (1996-),男,中国科学技术大学硕士研究生,平安科技(深圳)有限公司算法工程师,中国计算机学会会员,主要研究方向为人工智能,联邦学习和推荐系统等。
司世景(1988‒ ),男,博士,平安科技(深圳)有限公司资深算法研究员,深圳市海外高层次人才。美国杜克大学人工智能博士后,中国计算机学会会员,主要研究方向为机器学习和及其在人工智能领域应用。王健宗(1983‒ ),男,博士,平安科技(深圳)有限公司副总工程师,资深人工智能总监,联邦学习技术部总经理。美国佛罗里达大学人工智能博士后,中国计算机学会高级会员,中国计算机学会大数据专家委员会委员,曾任美国莱斯大学电子与计算机工程系研究员,主要研究方向为联邦学习和人工智能等。
肖京(1972‒ ),男,博士,中国平安集团首席科学家,2019年吴文俊人工智能杰出贡献奖获得者,中国计算机学会深圳分部副主席。主要研究方向为计算机图形学学科、自动驾驶、3D显示、医疗诊断、联邦学习等。
Zhu Zhitao1,2, Si Shijing1, Wang Jianzong1,*, Xiao Jing1
摘要: 自联邦学习被提出以来,针对其优化方法和部署实现的快速发展步伐从未放缓。 在联邦学习范式中,原始数据被本地存储在独立的用户客户端中,而脱敏数据被发送到中心服务器中加以聚合,这给众多领域提供了一种新颖的设计思路。考虑到传统推荐系统的研究方向集中于提高推荐效果,在资源节约、跨领域推荐、隐私保护等方面还具有很大改进空间,如何将联邦学习与推荐系统结合以缓解这些问题成为当前的一个研究热点。本文第一次对近年来基于联邦学习的推荐系统进行了全面的总结、比较与分析,首先介绍了推荐系统的传统实现方式及面临的瓶颈,然后,引入了联邦学习范式,并描述了联邦学习在隐私保护、利用多领域用户数据两方面给推荐系统带来的增益,以及二者结合的技术挑战,进而详细说明了现有的联邦推荐系统部署方式。 最后,对联邦推荐系统未来的研究进行了展望与总结。
朱智韬, , 司世景 , 王健宗, , 肖京. 联邦推荐系统综述[J]. 大数据, doi: 10.11959/j.issn.2096-0271.2022032.
Zhu Zhitao, Si Shijing, Wang Jianzong, Xiao Jing. Survey on Federated Recommendation Systems[J]. Big Data Research, doi: 10.11959/j.issn.2096-0271.2022032.
[1] ZHANG S, YAO L, SUN A, et al. Deep learning based recommender system: A survey and new perspectives[J]. ACM Computing Surveys (CSUR), 2019, 52(1): 1-38. [2] RICCI F, ROKACH L, SHAPIRA B. Introduction to recommender systems handbook [M]. Recommender systems handbook. Springer. 2011: 1-35. [3] ALBRECHT J P. How the GDPR will change the world[J]. Eur Data Prot L Rev, 2016, 2: 287. [4] MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[C]// Proc of the Fifth ACM conference on Digital libraries, New York, USA. ACM, 2000: 195-204. [5] SHARDANAND U, MAES P. Social information filtering: algorithms for automating “word of mouth”[C]// Proc of the SIGCHI conference on Human factors in computing systems, New York, USA. ACM Press, 1995: 210-7. [6] MILLER B N, ALBERT I, LAM S K, et al. Movielens unplugged: experiences with an occasionally connected recommender system[C]// Proc of the Int’l Conf on Intelligent User Interfaces, New York, USA. ACM, 2003: 263-6. [7] TERVEEN L, HILL W, AMENTO B, et al. PHOAKS: A system for sharing recommendations[J]. Communications of the ACM, 1997, 40(3): 59-62. [8] GOLDBERG K, ROEDER T, GUPTA D, et al. Eigentaste: A constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4(2): 133-51. [9] BILLSUS D, PAZZANI M J. Learning collaborative information filters[C]// Proc of the Int’l Conf on Machine Learning, San Francisco, USA. Morgan Kaufmann, 1998,98: 46-54. [10] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-49 [11] DESHPANDE M, KARYPIS G. Item-based top-n recommendation algorithms[J]. ACM Transactions on Information Systems (TOIS), 2004, 22(1): 143-77. [12] SU X, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009, 2009: 421425:1-19. [13] CHOI K, YOO D, KIM G, et al. A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis[J]. Electronic Commerce Research and Applications, 2012, 11(4): 309-17. [14] XIANG L, YUAN Q, ZHAO S, et al. Temporal recommendation on graphs via long-and short-term preference fusion[C]// Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA. ACM, 2010: 723-32. [15] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]// Proc of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Wisconsin, USA. Morgan Kaufmann, 1998. [16] UNGAR L H, FOSTER D P. Clustering methods for collaborative filtering[C]// Proc of the AAAI Workshop on Recommendation Systems, Menlo Park, USA. AAAI 1998: 114-29. [17] 黄立威, 江碧涛, 吕守业, et al. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-47. HUANG LIWEI, JIANG BITAO, LV SHOUYE, et al. Survey on deep learning based recommender systems[J].Chinese Journal of Computers, 2018, 41(7): 1619-1647 [18] PAZZANI M J, BILLSUS D. Content-based recommendation systems [M]. The Adaptive Web. Springer. 2007: 325-41. [19] SALTON G, WONG A, YANG C-S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-20. [20] BURKE R. Hybrid Recommender Systems: Survey and Experiments[J]. User Modeling and User-Adapted Interaction, 2004, 12: 331-70. [21] WANG H, WANG N, YEUNG D-Y. Collaborative Deep Learning for Recommender Systems[C]// Proc of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia. 2015: 1235-44. [22] YANG X, STECK H, LIU Y. Circle-based recommendation in online social networks[C]// Proc of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China. ACM, 2012. [23] KRULWICH B. LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data[J]. AI Mag, 1997, 18: 37-45. [24] GONZáLEZ G, LóPEZ B. A Multi-agent Smart User Model for Cross-domain Recommender Systems[C]// Proc of the 2005 International Conference on Intelligent User Interfaces: Beyond Personalization, San Diego, USA. 2005. [25] DENG L, YU D. Deep learning: methods and applications[J]. Found Trends Signal Process, 2014, 7: 197-387. [26] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]// Proc of the 24th International Conference on Machine Learning, Oregon, USA. ACM, 2007: 791-8. [27] SEDHAIN S, MENON A K, SANNER S, et al. Autorec: Autoencoders meet collaborative filtering[C]// Proc of the 24th International Conference on World Wide Web, Florence, Italy. ACM, 2015: 111-2. [28] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proc of the 26th International Conference on World Wide Web, Perth, Australia. ACM, 2017: 173-82. [29] ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction[C]// Proc of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK. ACM, 2018: 1059-68. [30] ZHOU G, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]// Proc of the AAAI Conference on Artificial Intelligence, Honolulu, USA. AAAI, 2019,33: 5941-8. [31] LI C, LIU Z, WU M, et al. Multi-interest network with dynamic routing for recommendation at Tmall[C]// Proc of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China. ACM, 2019: 2615-23. [32] HE X, CHUA T-S. Neural factorization machines for sparse predictive analytics[C]// Proc of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Japan. ACM, 2017: 355-64. [33] GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]// Proc of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia. IJCAI, 2017. [34] XIAO J, YE H, HE X, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[C]// Proc of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia. IJCAI, 2017. [35] GONG Y, ZHANG Q. Hashtag recommendation using attention-based convolutional neural network[C]// Proc of the 25th International Joint Conference on Artificial Intelligence, New York, USA. Morgan Kaufmann, 2016: 2782-8. [36] ZHANG Q, WANG J, HUANG H, et al. Hashtag Recommendation for Multimodal Microblog Using Co-Attention Network[C]// Proc of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia. IJCAI, 2017: 3420-6. [37] VAN DEN OORD A A R, DIELEMAN S, SCHRAUWEN B. Deep content-based music recommendation[C]// Proc of the Advances in Nerual Information Processing Systems, Lake Tahoe, USA. MIT Press, 2013,26. [38] LEI C, LIU D, LI W, et al. Comparative deep learning of hybrid representations for image recommendations[C]// Proc of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA. IEEE, 2016: 2545-53. [39] HIDASI B A Z, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]// Proc of the International Conference on Learning Representations (2015), San Diego, USA. 2015. [40] LIU Q, WU S, WANG L. Multi-behavioral sequential prediction with recurrent log-bilinear model[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29: 1254-67. [41] WU C, WANG J, LIU J, et al. Recurrent neural network based recommendation for time heterogeneous feedback[J]. Knowledge-Based Systems, 2016, 109: 90-103. [42] LI Y, LIU T, JIANG J, et al. Hashtag recommendation with topical attention-based LSTM[C]// Proc of the 26 International Conference on Computational Linguistics, Osaka, Japan. Coling, 2016. [43] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proc of the 20th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL. Taylor & Francis, 2017: 1273-82. [44] KONEČNý J, MCMAHAN B, RAMAGE D. Federated optimization: Distributed optimization beyond the datacenter[J]. arXiv preprint arXiv:151103575, 2015. [45] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Found Trends Mach Learn 14 (2021), 2019: 1-210. [46] LI Q, WEN Z, HE B. Federated learning systems: Vision, hype and reality for data privacy and protection[J]. arXiv preprint arXiv:190709693, 2019. [47] HARD A, RAO K, MATHEWS R, et al. Federated learning for mobile keyboard prediction[J]. arXiv preprint arXiv:181103604, 2018. [48] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10: 1-19. [49] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 2009, 22 (10): 1345-59. [50] 周俊, 董晓蕾, 曹珍富. 推荐系统的隐私保护研究进展[J]. 计算机研究与发展, 2019, 56(10): 2033. ZHOU JUN, DONG XIAOLEI, CAO ZHENFU. Research progress on privacy protection of recommender systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033. [51] KIM S, KIM J, KOO D, et al. Efficient privacy-preserving matrix factorization via fully homomorphic encryption[C]// Proc of the 11th ACM on Asia Conference on Computer and Communications Security, New York, USA. ACM, 2016: 617-28. [52] AGRAWAL R, SRIKANT R. Privacy-preserving data mining[C]// Proc of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas Texas, USA. ACM, 2000: 439-50. [53] POLAT H, DU W. Privacy-preserving collaborative filtering using randomized perturbation techniques[C]// Proc of the Third IEEE International Conference on Data Mining, Melbourne, Florida. IEEE, 2003: 625-8. [54] CHEN K, LIU L. Privacy preserving data classification with rotation perturbation[C]// Proc of the Fifth IEEE International Conference on Data Mining (ICDM'05), New Orleans, Louisiana, USA. IEEE, 2005: 4-pp. [55] DWORK C, ROTH A, OTHERS. The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science, 2014, 9(3-4): 211-407. [56] MCSHERRY F, MIRONOV I. Differentially private recommender systems: Building privacy into the netflix prize contenders[C]// Proc of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France. ACM, 2009: 627-36. [57] ZHU T, REN Y, ZHOU W, et al. An effective privacy preserving algorithm for neighborhood-based collaborative filtering[J]. Future Generation Computer Systems, 2014, 36: 142-55. [58] BERLIOZ A, FRIEDMAN A, KAAFAR M A, et al. Applying differential privacy to matrix factorization[C]// Proc of the 9th ACM Conference on Recommender Systems, Vienna, Austria. ACM, 2015: 107-14. [59] OREKONDY T, OH S J, ZHANG Y, et al. Gradient-leaks: Understanding and controlling deanonymization in federated learning[J]. arXiv preprint arXiv:180505838, 2018. [60] WANG Z, SONG M, ZHANG Z, et al. Beyond inferring class representatives: User-level privacy leakage from federated learning[C]// Proc of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France. IEEE, 2019: 2512-20. [61] MELIS L, SONG C, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]// Proc of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, USA. IEEE, 2019: 691-706. [62] 王健宗, 孔令炜, 黄章成, et al. 联邦学习隐私保护研究进展[J]. 大数据, 7(3): 2021030. WANG JIANZONG, KONG LINGWEI, HUANG ZHANGCHENG, et al. Research advances on privacy protection of federated learning[J]. Big Data Research, 2021, 7(3): 2021030. [63] TRUEX S, LIU L, CHOW K-H, et al. LDP-Fed: Federated learning with local differential privacy[C]// Proc of the Third ACM International Workshop on Edge Systems, Analytics and Networking, Heraklion, Greece. ACM, 2020: 61-6. [64] LIU R, CAO Y, YOSHIKAWA M, et al. FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection[C]// Proc of the International Conference on Database Systems for Advanced Applications (DASFAA), Jeju, Korea. Springer, 2020: 485-501. [65] TRIASTCYN A, FALTINGS B. Federated learning with bayesian differential privacy[C]// Proc of the Ieee Int Conf Big Da, Los Angeles, USA. IEEE, 2019: 2587-96. [66] BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proc of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas Texas, USA. ACM, 2017: 1175-91. [67] LI T, SONG L, FRAGOULI C. Federated Recommendation System via Differential Privacy[J]. 2020 IEEE International Symposium on Information Theory (ISIT), 2020: 2592-7. [68] LIU S, XU S, YU W, et al. FedCT: Federated Collaborative Transfer for Recommendation[C]// Proc of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2021. [69] 王健宗, 肖京, 朱星华, et al. 联邦推荐系统的协同过滤冷启动解决方法[J]. 智能系统学报, 2021, 16(01): 178-85. WANG JIANZONG, XIAO JING, ZHU XINGHUA, et al. Cold Starts in Collaborative Filtering for Federated Recommender Systems[J]. CAAI Transactions on Intelligent Systems, 2021, 16(01): 178-85. [70] WANG L-E, WANG Y, BAI Y, et al. POI Recommendation with Federated Learning and Privacy Preserving in Cross Domain Recommendation[C]// Proc of the IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2021: 1-6. [71] ZONG L, XIE Q, ZHOU J, et al. FedCMR: Federated Cross-Modal Retrieval[C]// Proc of the Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2021. [72] MA J, ZHANG Q, LOU J, et al. Communication Efficient Federated Generalized Tensor Factorization for Collaborative Health Data Analytics[C]// Proc of the Web Conference 2021. ACM, 2021: 171-82. [73] CAO L. Non-iid recommender systems: A review and framework of recommendation paradigm shifting[J]. Engineering, 2016, 2(2): 212-24. [74] WANG C, CAO L, WANG M, et al. Coupled nominal similarity in unsupervised learning[C]// Proc of the 20th ACM international conference on Information and knowledge management, Glasgow, Scotland. ACM, 2011: 973-8. [75] WANG C, DONG X, ZHOU F, et al. Coupled attribute similarity learning on categorical data[J]. Ieee T Neur Net Lear, 2014, 26(4): 781-97. [76] 王健宗, 孔令炜, 黄章成, et al. 联邦学习算法综述[J]. 大数据, 2020, 6(6): 0. WANG JIANZONG, KONG LINGWEI, HUANG ZHANGCHENG, et al. Research Review of Federated Learning Algorithms[J] . Big Data Research, 2020, 6(6): 2020055-1- doi:10.11959/j.issn.2096-0271.2020055 [77] WU Q, HE K, CHEN X. Personalized federated learning for intelligent iot applications: A cloud-edge based framework[J]. IEEE Computer Graphics and Applications, 2020. [78] YANG C, WANG Q, XU M, et al. Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data[C]// Proc of the Web Conference 2021. ACM, 2021. [79] LIU L, ZHANG J, SONG S H, et al. Client-Edge-Cloud Hierarchical Federated Learning[C]// Proc of the 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. [80] XIE C, KOYEJO O, GUPTA I. Asynchronous Federated Optimization[J]. ArXiv, 2019, abs/1903.03934. [81] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proc of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Ft. Lauderdale, FL. JMLR, 2017: 1273-82. [82] LI X, HUANG K, YANG W, et al. On the Convergence of FedAvg on Non-IID Data[C]// Proc of the Seventh International Conference on Learning Representations, New Orleans, USA. ICLR, 2019. [83] ZHAO Y, LI M, LAI L, et al. Federated learning with non-iid data[J]. arXiv preprint arXiv:180600582, 2018. [84] KULKARNI V, KULKARNI M, PANT A. Survey of personalization techniques for federated learning[C]// Proc of the Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK. IEEE, 2020: 794-7. [85] WU J, LIU Q, HUANG Z, et al. Hierarchical Personalized Federated Learning for User Modeling[C]// Proc of the Proceedings of the Web Conference 2021. ACM, 2021. [86] ROTHCHILD D, PANDA A, ULLAH E, et al. FetchSGD: Communication-Efficient Federated Learning with Sketching[C]// Proc of the Thirty-seventh International Conference on Machine Learning (ICML), Vienna, Austria. ACM, 2020. [87] REISIZADEH A, MOKHTARI A, HASSANI H, et al. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization[C]// Proc of the International Conference on Artificial Intelligence and Statistics (AISTATS), Palermo, Sicily, Italy. PMLR, 2020: 2021-31. [88] KHAN F K, FLANAGAN A, TAN K E, et al. A Payload Optimization Method for Federated Recommender Systems[C]// Proc of the 9th ACM Conference on Recommender Systems (RecSys), Vienna, Austria. ACM, 2021. [89] MALINOVSKY G, KOVALEV D, GASANOV E, et al. From Local SGD to Local Fixed Point Methods for Federated Learning[C]// Proc of the 37th International Conference on Machine Learning,(ICML). PMLR, 2020,119: 6692-701. [90] J K, MCMAHAN H B, YU F X, et al. Federated learning: Strategies for improving communication efficiency[C]// Proc of the NIPS Workshop on Private Multi-Party Machine Learning, Barcelona, Spain. MIT Press, 2016. [91] MANSOUR Y, MOHRI M, RO J, et al. Three Approaches for Personalization with Applications to Federated Learning[J]. ArXiv, 2020, abs/2002.10619. [92] SMITH V, CHIANG C-K, SANJABI M, et al. Federated Multi-Task Learning[C]// Proc of the Annual Conference on Neural Information Processing Systems, Long Beach, USA. MIT Press, 2017. [93] LINDEN G, SMITH B, YORK J. Amazon. com recommendations: Item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80. [94] LI D, WANG J. FedMD: Heterogenous Federated Learning via Model Distillation[J]. ArXiv, 2019, abs/1910.03581. [95] ARIVAZHAGAN M G, AGGARWAL V, SINGH A, et al. Federated Learning with Personalization Layers[J]. ArXiv, 2019, abs/1912.00818. [96] HANZELY F, RICHTáRIK P. Federated Learning of a Mixture of Global and Local Models[J]. ArXiv, 2020, abs/2002.05516. [97] WANG J, JOSHI G. Cooperative SGD: A Unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms[C]// Proc of the ICML Workshop on Coding Theory for Machine Learning, Long Beach, California, USA. ACM, 2019. [98] LIANG P P, LIU T, ZIYIN L, et al. Think locally, act globally: Federated learning with local and global representations[J]. arXiv preprint arXiv:200101523, 2020. [99] LIU Y, KANG Y, ZHANG X, et al. A Communication Efficient Vertical Federated Learning Framework[J]. ArXiv, 2019, abs/1912.11187. [100] AMMAD-UD-DIN M, IVANNIKOVA E, KHAN S A, et al. Federated Collaborative Filtering for Privacy-Preserving Personalized Recommendation System[J]. arXiv preprint arXiv:190109888, 2019. [101] CHAI D, WANG L, CHEN K, et al. Secure Federated Matrix Factorization[J]. IEEE Intelligent Systems, 2020. [102] MINTO L, HALLER M, HADDADI H, et al. Stronger Privacy for Federated Collaborative Filtering with Implicit Feedback[C]// Proc of the 9th ACM Conference on Recommender Systems (RecSys), Vienna, Austria. ACM, 2021. [103] LIN G, LIANG F, PAN W, et al. Fedrec: Federated recommendation with explicit feedback[J]. IEEE Intelligent Systems, 2020. [104] LIANG F, PAN W, MING Z. FedRec++: Lossless Federated Recommendation with Explicit Feedback[C]// Proc of the 35th AAAI Conference on Artificial Intelligence. AAAI, 2021,35: 4224-31. [105] QI T, WU F, WU C, et al. Privacy-Preserving News Recommendation Model Learning[C]// Proc of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings. ACL, 2020: 1423-32. [106] OKURA S, TAGAMI Y, ONO S, et al. Embedding-based news recommendation for millions of users[C]// Proc of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada. ACM, 2017: 1933-42. [107] HUANG M, LI H, BAI B, et al. A Federated Multi-View Deep Learning Framework for Privacy-Preserving Recommendations[J]. arXiv preprint arXiv:200810808, 2020. [108] HUANG P-S, HE X, GAO J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proc of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, California, USA. ACM, 2013: 2333-8. [109] LIN Y, REN P, CHEN Z, et al. Meta Matrix Factorization for Federated Rating Predictions[C]// Proc of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 981-90. [110] GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]// Proc of the International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia. Morgan Kaufmann, 2017. [111] MUHAMMAD K, WANG Q, O'REILLY-MORGAN D, et al. FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems [Z]. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. 2020: 1234-42 [112] KHARITONOV E. Federated online learning to rank with evolution strategies[C]// Proc of the Twelfth ACM International Conference on Web Search and Data Mining (WSDM), Melbourne. ACM, 2019: 249-57. [113] TRIENES J, CANO A E S T, HIEMSTRA D. Recommending Users: Whom to Follow on Federated Social Networks[J]. arXiv preprint arXiv:181109292, 2018. [114] TAN B, LIU B, ZHENG V, et al. A Federated Recommender System for Online Services[C]// Proc of the Fourteenth ACM Conference on Recommender Systems (RecSys). ACM, 2020: 579-81. [115] RIBERO M O N, HENDERSON J, WILLIAMSON S, et al. Federating Recommendations Using Differentially Private Prototypes[J]. arXiv preprint arXiv:200300602, 2020. [116] HU H, DOBBIE G, SALCIC Z, et al. A Locality Sensitive Hashing Based Approach for Federated Recommender System[C]// Proc of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020: 836-42. [117] BLANCHARD P, GUERRAOUI R, STAINER J, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]// Proc of the Thirty-first Annual Conference on Neural Information Processing Systems (NIPS) Long Beach, Los Angeles, USA. MIT Press, 2017: 119-29. [118] MHAMDI E M E, GUERRAOUI R, ROUAULT S E B. The hidden vulnerability of distributed learning in byzantium[C]// Proc of the Thirty-fourth International Conference on Machine Learning (ICML), Sydney, Australia. ACM, 2018. [119] WANG H, YUROCHKIN M, SUN Y, et al. Federated Learning with Matched Averaging[J]. ArXiv, 2020, abs/2002.06440. [120] LIU B, YAN B, ZHOU Y, et al. FedCM: A Real-time Contribution Measurement Method for Participants in Federated Learning[J]. 2021 International Joint Conference on Neural Networks (IJCNN), 2021: 1-8. [121] WANG G, DANG C X, ZHOU Z. Measure Contribution of Participants in Federated Learning[J]. Ieee Int Conf Big Da, 2019: 2597-604. [122] ZHANG J, LI C, ROBLES-KELLY A, et al. Hierarchically Fair Federated Learning[J]. ArXiv, 2020, abs/2004.10386. |
[1] | 张凯, 车漾. 基于分布式缓存加速容器化深度学习的优化方法[J]. 大数据, 2021, 7(5): 2021054-. |
[2] | 温景熙, 于胡飞, 辛江, 唐艳. 基于深度学习的大脑性别差异分析[J]. 大数据, 2021, 7(4): 2021043-. |
[3] | 王健宗, 孔令炜, 黄章成, 陈霖捷, 刘懿, 卢春曦, 肖京. 联邦学习隐私保护研究进展[J]. 大数据, 2021, 7(3): 2021030-. |
[4] | 彭鑫, 陈驰, 林云. 基于上下文的智能化代码复用推荐[J]. 大数据, 2021, 7(1): 0-. |
[5] | 张建, 孟祥鑫, 孙海龙, 王旭, 刘旭东. 数据驱动的软件开发者智能协作技术[J]. 大数据, 2021, 7(1): 0-. |
[6] | 乐洁玉,罗超洋,丁静姝,李卿. 教育大数据隐私保护机制与技术研究[J]. 大数据, 2020, 6(6): 0-. |
[7] | 王健宗,孔令炜,黄章成,陈霖捷,刘懿,何安珣,肖京. 联邦学习算法综述[J]. 大数据, 2020, 6(6): 0-. |
[8] | 王丽会,秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6): 0-. |
[9] | 于胡飞,温景熙,辛江,唐艳. 基于生成对抗网络的医学数据域适应研究[J]. 大数据, 2020, 6(5): 0-. |
[10] | 宋婷,陈战伟,杨海峰. 基于分层注意力网络的方面情感分析[J]. 大数据, 2020, 6(5): 0-. |
[11] | 马玮良,彭轩,熊倩,石宣化,金海. 深度学习中的内存管理问题研究综述[J]. 大数据, 2020, 6(4): 0-. |
[12] | 于璠. 新一代深度学习框架研究[J]. 大数据, 2020, 6(4): 0-. |
[13] | 汪靖伟,郑臻哲,吴帆,陈贵海. 基于区块链的数据市场[J]. 大数据, 2020, 6(3): 0-. |
[14] | 孙慧中,杨健宇,程祥,苏森. 一种基于随机投影的本地差分隐私高维数值型数据收集算法[J]. 大数据, 2020, 6(1): 0-. |
[15] | 王平,张玉书,何兴,仲盛. 基于安全压缩感知的大数据隐私保护[J]. 大数据, 2020, 6(1): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|