大数据 ›› 2022, Vol. 8 ›› Issue (5): 139-152.doi: 10.11959/j.issn.2096-0271.2022039

• 研究 • 上一篇    

基于PSOFS和TSK模糊系统的不平衡心电数据分类算法

李鑫辉1,2, 申情2,3, 张雄涛1,2   

  1. 1 湖州师范学院信息工程学院,浙江 湖州 313000
    2 浙江省现代农业资源智慧管理与应用研究重点实验室,浙江 湖州 313000
    3 湖州学院理工学院,浙江 湖州 313000
  • 出版日期:2022-09-01 发布日期:2022-09-01
  • 作者简介:李鑫辉(1997- ),男,湖州师范学院信息工程学院硕士生,主要研究方向为智能信息处理和模糊系统等
    申情(1982- ),女,博士,湖州学院理工学院讲师,主要研究方向为人工智能等
    张雄涛(1984- ),男,博士,湖州师范学院信息工程学院讲师,主要研究方向为模式识别和模糊系统等
  • 基金资助:
    国家自然科学基金资助项目(61771193);国家自然科学基金资助项目(61802123);浙江省教育厅一般科研项目(Y202146028)

Classification algorithm for imbalance data of ECG based on PSOFS and TSK fuzzy system

Xinhui LI1,2, Qing SHEN2,3, Xiongtao ZHANG1,2   

  1. 1 School of Information Engineering, Huzhou University, Huzhou 313000, China
    2 Zhejiang Province Key Laboratory of Smart Management &Application of Modern Agricultural Resources, Huzhou 313000, China
    3 School of Science and Engineering, Huzhou College, Huzhou 313000, China
  • Online:2022-09-01 Published:2022-09-01
  • Supported by:
    The National Natural Science Foundation of China(61771193);The National Natural Science Foundation of China(61802123);General Research Program of Zhejiang Educational Committee(Y202146028)

摘要:

提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网络(PE-PT-FN),用于心电图预测。首先对训练集中的各类样本进行随机放回抽样,然后将抽样得到的样本合并在一起,再独立且并行地通过PSOFS算法进行特征选择。PSOFS算法中不同的位置表示不同的特征子集,初始位置随机的粒子经过多次迭代收敛至最佳位置。每个子集得到一个特征子集用于并行训练多组独立的小型TSK模糊神经网络(TSK-FNN)。模糊系统的可解释性和PSOFS算法挑选出来的特征子集能有效地帮助医学研究者找出心电信号数据与不同类型病例之间的关联。实验证明,PE-PT-FN在保留可解释性的前提下,能将预测结果的宏召回率提升至92.35%。

关键词: TSK模糊神经网络, 粒子群优化特征选择, 集成学习, 心电信号分类, 不平衡数据

Abstract:

A new classification model of electrocardiogram (ECG) signal based on particle swarm optimization feature selection (PSOFS) and TSK (Takagi-Sugeno-Kang) fuzzy system was proposed, i.e., parallel ensemble fuzzy neural network based on PSOFS and TSK (PE-PT-FN), which was used for ECG prediction.Each class sample in the training set was randomly sampled, and the samples obtained by randomly sampled were added.Then, the feature selection method PSOFS was carried out independently and parallelly.In PSOFS, particles that were random initial positions represent different feature subsets and converge to the optimal positions after many iterations.Each subset had a corresponding feature subset.Several groups of TSK fuzzy neural network (TSK-FNN) were trained by each feature subset in parallel.Medical researchers could effectively find the correlation between ECG signal data and different types of disease through the interpretability of the fuzzy system and the feature subsets by the PSOFS algorithm.Experiments prove that PE-PT-FN greatly improves the macro-R to 92.35% while retaining interpretability.

Key words: TSK fuzzy neural network, particle swarm optimization feature selection, ensemble learning, classification of ECG signal, imbalance data

中图分类号: 

No Suggested Reading articles found!