[1] XU, X. Research prospect: data factor of production. Journal of Internet and Digital Economics, Vol. 1 No. 1, pp. 64-71.
[2] SONG L, WU H, RUAN W, HAN W: SoK: Training Machine Learning Models over Multiple Sources with Privacy Preservation[J]. CoRR abs/2012.03386 (2020).
[3] CRAMER R and IVAN B D. Secure multiparty computation[M]. Cambridge University Press, 2015.
[4] ODED G, SILVIO M, and AVI W. How to play ANY mental game. In Proceedings of the nineteenth annual ACM symposium on Theory of computing (STOC '87) [C]. Association for Computing Machinery, New York, NY, USA, 218–229.
[5] WIGDERSON A, OR M B, GOLDWASSER S. Completeness theorems for noncryptographic fault-tolerant distributed computations[C]//Proceedings of the 20th Annual Symposium on the Theory of Computing (STOC’88). 1988: 1-10.
[6] MOHASSEL P, ZHANG Y. Secureml: A system for scalable privacy-preserving machine learning[C]//2017 IEEE symposium on security and privacy (SP). IEEE, 2017: 19-38.
[7] MOHASSEL P, RINDAL P. ABY3: A mixed protocol framework for machine learning[C]//Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 2018: 35-52.
[8] DALSKOV A, ESCUDERO D, KELLER M. Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security[C]//30th USENIX Security Symposium (USENIX Security 21). 2021: 2183-2200.
[9] KOTI N, PANCHOLI M, PATRA A, et al. {SWIFT}: Super-fast and Robust {Privacy-Preserving} Machine Learning[C]//30th USENIX Security Symposium (USENIX Security 21). 2021: 2651-2668.
[10] PATRA A, SURESH A. BLAZE: blazing fast privacy-preserving machine learning[J]. arXiv preprint arXiv:2005.09042, 2020.
[11] TAN S, KNOTT B, TIAN Y, et al. CryptGPU: Fast privacy-preserving machine learning on the GPU[C]//2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021: 1021-1038.
[12] WAGH S, TOPLE S, BENHAMOUDA F, et al. Falcon: Honest-majority maliciously secure framework for private deep learning[J]. arXiv preprint arXiv:2004.02229, 2020.
[13] LI T, SAHU A K, TALWALKAR A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50-60.
[14] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19.
[15] 王健宗, 孔令炜, 黄章成, 陈霖捷, 刘懿, 卢春曦, 肖京. 联邦学习隐私保护研究进展[J]. 大数据, 2021, 7(3): 2021030.
[16] 周传鑫, 孙奕, 汪德刚, 葛桦玮. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5): 77-92.
[17] ZHU L, LIU Z, HAN S. Deep leakage from gradients[J]. Advances in Neural Information Processing Systems, 2019, 32.
[18] JERE M S, FARNAN T, KOUSHANFAR F. A taxonomy of attacks on federated learning[J]. IEEE Security & Privacy, 2020, 19(2): 20-28.
[19] NIU, C., ZhENG, Z., WU, F., TANG, S., & CHEN, G. (2020). Online pricing with reserve price constraint for personal data markets[J]. IEEE Transactions on Knowledge and Data Engineering.
[20] ZHENG, Z., SONG, L., & HAN, Z. (2017, May). Bridging the gap between big data and game theory: A general hierarchical pricing framework[C]//In 2017 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.
[21] GENTRY C. Fully homomorphic encryption using ideal lattices[C]//Proceedings of the forty-first annual ACM symposium on Theory of computing. 2009: 169-178.
|