Please wait a minute...
ISSN 2096-0271  CN 10-1321/G2
信息通信学术期刊网  设为首页  加入收藏
 RSS | Email Alert
大数据  2017 Issue (2)    DOI: 10.11959/j.issn.2096-0271.2017024
  动态 本期目录 | 过刊浏览 | 高级检索 |
Talent recommendation system in big data era
全文: PDF (8669KB)   ( 236 ) HTML     XML
输出: BibTeX | EndNote (RIS)  
E-mail Alert
出版日期: 2017-03-24
图1   求职招聘网站分类
图2   厦门人才网人才推荐项目
图3   iHR$lt@span sup=1$gt@+$lt@/span$gt@总体架构
图4   二部图人才推荐模型
图5   大规模专家协作创新平台(科技驿栈)
[1] 洪文兴 . 基于互联网的决策理论与方法的若干问题研究[D]. 厦门:厦门大学, 2010. HONG W X . Research on web-based decision-making theory and method[D]. Xiamen:Xiamen University, 2010.
[2] ADOMAVICIUS G , TUZHILIN A . Toward the next generation of recommender systems:a survey of the state-of-theart and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6): 734-749.
[3] 曾春, 刑春晓, 周立柱 . 个性化服务技术综述[J]. 软件学报, 2002(10): 1952-1961. ZENG C , XING C X , ZHOU L Z . A survey of personalization technology[J]. Journal of Software, 2002(10): 1952-1961.
[4] GONZALEZ T , SANTOS P , OROZCO F ,et al. Adaptive employee profile classification for resource planning tool[C]// 2012 Annual SRII Global Conference,July 24-27,2012,San Jose,CA,USA, New Jersey: IEEE Press, 2012: 544-553.
[5] HONG W X , LI L , LI T ,et al. iHR:an online recruiting system for xiamen talent service center[C]// The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 11-14,2013,Chicago,IL,USA, New York: ACM Press, 2013: 1177-1185.
[6] 李涛 . 数据挖掘的应用与实践——大数据时代的案例分析[M]. 厦门: 厦门大学出版社, 2013: 123-162. LI T . Data mining:where theory meets practice[M]. Xiamen: Xiamen University PressPress, 2013: 123-162.
[7] MELVILLE P , MOONEY R J , NAGARAJAN R . Content-boosted collaborative filtering for improved recommendations[C]// The 18th National Conference on Artificial Intelligence,July 28-August 1,2002,Edmonton,Canada, New York: ACM Press, 2002: 187-192.
[8] LI L , LI T . MEET:a generalized framework for reciprocal recommender systems[C]// The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012),October 29 November 2,2012,Maui,Hawaii,USA, New York: ACM Press, 2012: 35-44.
[9] GAUCH S , SPERETTA M , CHANDRAMOULI A ,et al. User profiles for personalized information access[M]. Berlin: Springer Berlin HeidelbergPress, 2007: 54-89.
[10] PIZZATO L , REJ T , CHUNG T ,et al. Reciprocal recommenders[C]// The 8th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems(UMAP’2010),June 20-24,2010,Hawaii,USA,[S.l.:s.n.],2010:1-12. 2010: 1-12.
[11] PIZZATO L , REJ T , CHUNG T ,et al. Recon:a reciprocal recommender for online dating[C]// The 4th ACM Conference on Recommender Systems,September 26-30,2010,Barcelona,Spain, New York: ACM Press, 2010: 207-214.
[12] MALINOWSKI J , KEIM T , WENDT O ,et al. Matching people and jobs:a bilateral recommendation approach[C]// The 39th Annual Hawaii International Conference on System Sciences,January 4-7,2006,Kauai,Hawaii,USA, New Jersey: IEEE Press, 2006:137c.
[13] YU H , LIU C , ZHANG F . Reciprocal recommendation algorithm for the filed of recruitment[J]. Journal of Information& Computational Science, 2011,8(16): 4061-4068.
[14] BURKE R . Knowledge-based recommender systems[J].Encyclopedia of Library and Information Science,2000,69(Supplement):32. Encyclopedia of Library and Information Science, 2000,69(Supplement):32.
[15] VELASQUEZ J D , PALADE V . Building a knowledge base for implementing a webbased computerized recommendation system[J]. International Journal on Artificial Intelligence Tools, 2007,16(5): 793-828.
[16] CHEN C F , CHEN L F . Data mining to improve personnel selection and enhance human capital:a case study in hightechnology industry[J]. Expert Systems with Applications, 2008,34(1): 280-290.
[17] LI L , ZHENG L , LI T . LOGO:a long-short user interest integration in personalized news recommendation[C]// The 5th ACM Conference on Recommender Systems (RecSys 2011),October 23-27,2011,Chicago,Illinois,USA, New York: ACM Press, 2006: 317-320.□
No related articles found!


版权所有 © 2015 《大数据》编辑部
地址:北京市丰台区成寿寺路11号邮电出版大厦8层 邮编:100078 电话:(010)81055448/5490/5475 传真:(010)81055494