[1] |
刘晓波, 蒋阳升, 唐优华 ,等. 综合交通大数据应用技术的发展展望[J]. 大数据, 2019,5(3): 55-68.
|
|
L IU X B , JIANG Y S , TANG Y H ,et al. Development prospect of integrated transportation big data application technology[J]. Big Data Research, 2019,5(3): 55-68.
|
[2] |
WANG Y , ZHENG Y , XUE Y . Travel time estimation of a path using sparse trajectories[C]// The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2014: 25-34.
|
[3] |
BECKMANN N , KRIEGEL H P , SCHNEIDER R ,et al. The R*-tree: an efficient and robust access method for points and rectangles[C]// The 1990 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1990: 322-331.
|
[4] |
ZHONG R C , LI G L , TAN K L ,et al. G-tree: an efficient index for KNN search on road networks[C]// The 22nd ACM International Conference on Information &Knowledge Management. New York: ACM Press, 2013: 39-48.
|
[5] |
KAMEL I , FALOUTSOS C . Hilbert R-tree:an improved R-tree using fractals[R]. 1993.
|
[6] |
PFOSER D , JENSEN C S , THEODORIDIS Y . Novel approaches to the indexing of moving object trajectories[C]// The 26th International Conference on Very Large Data Bases. [S.l.:s.n.], 2000: 395-406.
|
[7] |
TAO Y F , PAPADIAS D . Efficient historical R-trees[C]// The 13th International Conference on Scientific and Statistical Database Management. Piscataway: IEEE Press, 2001: 223-232.
|
[8] |
WANG L H , ZHENG Y , XIE X ,et al. A flexible spatio-temporal indexing scheme for large-scale GPS track retrieval[C]// The 9th International Conference on Mobile Data Management. Piscataway:IEEE Press, 2018: 1-8.
|
[9] |
CHAKKA V P , EVERSPAUGH A C , PATEL J M . Indexing large trajectory data sets with SETI[C]// The 2003 CIDR Conference. [S.l.:s.n.], 2003: 75-86.
|
[10] |
FINKEL R A , BENTLEY J L . Quad trees a data structure for retrieval on composite keys[J]. Acta Informatica, 1974,4(1: 1-9.
|
[11] |
BENTLEY J L . Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975,189: 509-517.
|
[12] |
JENSEN C S , LIN D , OOI B C . Query and update efficient B+-tree based indexing of moving objects[C]// The 30th International Conference on Very Large Data Bases. [S.l.:s.n.], 2004: 768-779.
|
[13] |
COMER D . Ubiquitous B-tree[J]. ACM Computing Surveys, 1979,11(2): 121-137.
|
[14] |
ZOBEL J , MOFFAT A , RAMAMOHANARAO K . Inverted files versus signature files for text indexing[J]. ACM Transactions on Database Systems, 1998,23(4): 453-490.
|
[15] |
WU C H , HO J M , LEE D T . Traveltime prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004,5(4): 276-281.
|
[16] |
CHEN H , RAKHA H A , MCGHEE C C . Dynamic travel time prediction using pattern recognition[C]// The 20th World Congress on Intelligent Transportation Systems. [S.l.:s.n.], 2013.
|
[17] |
HOFLEITNER A , HERRING R , ABBEEL P ,et al. Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(4): 1679-1693.
|
[18] |
ZHAN X Y , HASAN S , UKKUSURI S V ,et al. Urban link travel time estimation using largescale taxi data with partial information[J]. Transportation Research Part C: Emerging Technologies, 2013,33: 37-49.
|
[19] |
ZHANG F M , ZHU X Y , HU T ,et al. Urban link travel time prediction based on a gradient boosting method considering spatiotemporal correlations[J]. ISPRS International Journal of Geo-Information, 2016,5(11): 201.
|
[20] |
NIU X G , ZHU Y , ZHANG X N . DeepSense:a novel learning mechanism for traffic prediction with taxi GPS traces[C]// 2014 IEEE Global Communications Conference. Piscataway: IEEE Press, 2014: 2745-2750.
|
[21] |
RAHMANI M , JENELIUS E , KOUTSOPOULOS H N . Route travel time estimation using low-frequency floating car data[C]// The 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). Piscataway: IEEE Press, 2013: 2292-2297.
|
[22] |
CHEN M , CHIEN S I J . Dynamic freeway travel-time prediction with probe vehicle data: link based versus path based[J]. Transportation Research Record, 2001,1768(1): 157-161.
|
[23] |
JIANG M Y , ZHAO T Q . Vehicle travel time estimation by sparse trajectories[C]// 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). Piscataway: IEEE Press, 2019: 433-442.
|
[24] |
KINGMA D P , BA J . Adam: a method for stochastic optimization[J]. arXiv preprint, 2014, arXiv:1412.6980..
|
[25] |
LI Y , GUNOPULOS D , LU C W ,et al. Urban travel time prediction using a small number of GPS floating cars[C]// The 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2017: 1-10.
|
[26] |
WANG H J , TANG X F , KUO Y H ,et al. A simple baseline for travel time estimation using large-scale trip data[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-22.
|
[27] |
JIANG Y J , LI X ,et al. Travel time prediction based on historical trajectory data[J]. Annals of GIS, 2013,19(1): 27-35.
|
[28] |
赖永炫, 杨旭, 曹琦 ,等. 一种基于Gradient Boosting的公交车运行时长预测方法[J]. 大数据, 2019,5(5): 58-78.
|
|
LAI Y X , YANG X , CAO Q ,et al. A bus running length prediction method based on Gradient Boosting[J]. Big Data Research, 2019,5(5): 58-78.
|
[29] |
YUAN H T , LI G L , BAO Z F ,et al. Effective travel time estimation: when historical trajectories over road networks matter[C]// The 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2020: 2135-2149.
|
[30] |
DING Y C , LI Y H , ZHOU X ,et al. Sampl ing big trajectory data for traversal trajectory aggregate query[J]. IEEE Transactions on Big Data, 2018,5(4): 550-563.
|
[31] |
YUAN J , ZHENG Y , ZHANG C Y ,et al. T-drive: driving directions based on taxi trajectories[C]// The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2010: 99-108.
|
[32] |
HAKLAY M , WEBER P . OpenStreetMap:user-generated street maps[J]. IEEE Pervasive Computing, 2008,7(4): 12-18.
|
[33] |
LI Z H , WANG J J , HAN J W . Mining event periodicity from incomplete observations[C]// The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2012: 444-452.
|
[34] |
LI Z H , WANG J J , HAN J W . ePeriodicity:mining event periodicity from incomplete observations[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,27(5): 1219-1232.
|
[35] |
NOTO M , SATO H . A method for the shortest path search by extended Dijkstra algorithm[C]// The 2000 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2000: 2316-2320.
|