网络与信息安全学报 ›› 2017, Vol. 3 ›› Issue (5): 32-37.doi: 10.11959/j.issn.2096-109x.2017.00164
袁亚飞1,卢伟1,冯丙文2,翁健2
修回日期:
2017-03-26
出版日期:
2017-05-01
发布日期:
2017-05-13
作者简介:
袁亚飞(1991-),男,河南商丘人,中山大学硕士生,主要研究方向为多媒体信息安全与数字取证。|卢伟(1979-),男,河南南阳人,中山大学副教授、硕士生导师,主要研究方向为多媒体信息安全与数字取证。|冯丙文(1985-),男,山东东营人,博士,暨南大学讲师,主要研究方向为多媒体安全与数字取证。|翁健(1976-),男,广东茂名人,博士,暨南大学教授、博士生导师,主要研究方向为密码学与信息安全。
基金资助:
Ya-fei YUAN1,Wei LU1,Bing-wen FENG2,Jian WENG2
Revised:
2017-03-26
Online:
2017-05-01
Published:
2017-05-13
Supported by:
摘要:
在实际应用中,针对未知隐写算法的盲检测难度非常大,结合实际应用设计实现了一个在线盲检测系统。在SRM算法的基础上,简化特征提取算法,提高特征可用性和提取速率;使用多个预训练检测模型,并采用加权投票策略判定检测结果;设计实现一种3层系统架构,分布式后台更加灵活高效;为了进一步满足实际应用要求,引入多线程技术,加快检测速率。实验表明,单张图片的平均检测时间可达0.97 s,并且对多种未知隐写算法均具有良好的检测结果。
中图分类号:
袁亚飞,卢伟,冯丙文,翁健. 基于多预训练模型的在线隐写盲分析系统研究与实现[J]. 网络与信息安全学报, 2017, 3(5): 32-37.
Ya-fei YUAN,Wei LU,Bing-wen FENG,Jian WENG. Online universal steganalysis system based on multiple pre-trained model[J]. Chinese Journal of Network and Information Security, 2017, 3(5): 32-37.
表1
Sub-SRM特征组成和子特征维度"
选取子特征算法 | 子特征维度 |
S1MINMAX24 | 325 |
S1MINMAX34 | 325 |
S1MINMAX54 | 325 |
S1SPAM14 | 338 |
S2MINMAX21 | 325 |
S2MINMAX32 | 325 |
S2MINMAX41 | 325 |
S2SPAM12 | 338 |
S3MINMAX24 | 325 |
S3MINMAX34 | 325 |
S3MINMAX54 | 325 |
S3SPAM14 | 338 |
S33MINMAX24 | 325 |
S33MINMAX41 | 325 |
S33SPAM14 | 338 |
S35SPAM11 | 338 |
S55MINMAX24 | 325 |
S55MINMAX41 | 325 |
S55SPAM14 | 338 |
SPAM | 686 |
WAM | 27 |
总计 | 6 966 |
表3
不同隐写算法模型检测错误率对比"
预训练模型 | cover | stego | ||
隐写算法 | bpp=0.25 | bpp=0.5 | ||
LSBM | 5.6% | 4.8% | ||
ModelLSBM0.25 | 7.6% | EA | 59.6% | 16.4% |
HUGO | 88.0% | 59.4% | ||
LSBM | 4.8% | 4.4% | ||
ModelLSBM0.5 | 9.0% | EA | 57.6% | 15.8% |
HUGO | 84.2% | 59.0% | ||
LSBM | 23.6% | 20.2% | ||
ModelEA0.25 | 17.0% | EA | 17.8% | 7.8% |
HUGO | 61.0% | 25.8% | ||
LSBM | 44.4% | 41.4% | ||
ModelEA0.5 | 7.6% | EA | 45.4% | 6.6% |
HUGO | 85.2% | 55.6% | ||
LSBM | 4.8% | 5.2% | ||
ModelHUGO0.25 | 30.6% | EA | 11.8% | 2.8% |
HUGO | 28.4% | 11.8% | ||
LSBM | 11.0% | 10.4% | ||
ModelHUGO0.5 | 20.8% | EA | 16.6% | 6.4% |
HUGO | 51.8% | 17.0% |
表4
不同隐写率模型检测错误率对比"
预训练模型 | cover | stego | ||
隐写算法 | bpp=0.25 | bpp=0.5 | ||
LSBM | 5.8% | 6.4% | ||
ModelHUGO0.15 | 38.0% | EA | 10.4% | 3.6% |
HUGO | 25.4% | 10.0% | ||
LSBM | 4.6% | 5.8% | ||
ModelHUGO0.2 | 34.2% | EA | 10.2% | 3.0% |
HUGO | 26.4% | 11.0% | ||
LSBM | 4.8% | 5.2% | ||
ModelHUGO0.25 | 30.6% | EA | 11.8% | 2.8% |
HUGO | 28.4% | 11.8% | ||
LSBM | 6.0% | 6.6% | ||
ModelHUGO0.3 | 29.2% | EA | 13.0% | 3.2% |
HUGO | 32.4% | 12.2% | ||
LSBM | 5.8% | 6.4% | ||
ModelHUGO0.35 | 35.0% | EA | 14.0% | 2.4% |
HUGO | 36.6% | 13.6% | ||
LSBM | 7.6% | 8.0% | ||
ModelHUGO0.4 | 25.4% | EA | 13.6% | 4.4% |
HUGO | 42.4% | 13.2% | ||
LSBM | 10.0% | 8.4% | ||
ModelHUGO0.45 | 22.0% | EA | 16.8% | 3.6% |
HUGO | 47.8% | 17.2% | ||
LSBM | 11.0% | 10.4% | ||
ModelHUGO0.5 | 16.6% | 6.4% | ||
HUGO | 51.8% | 17.0% |
[1] | CHEDDAD A , CONDELL J , CURRAN K ,et al. Digital image steganography:survey and analysis of current methods[J]. Signal Processing, 2010,90(3): 727-752. |
[2] | SHARP T , . An implementation of key-based digital signal stegano-graphy[C]// The International Workshop on Information Hiding. 2001: 13-26. |
[3] | LUO W , HUANG F , HUANG J . Edge adaptive image steganography based on LSB matching revisited[J]. IEEE Transactions on Information Forensics and Security, 2010,5(2): 201-214. |
[4] | PEVNY T , FILLER T , BAS P . Using high-dimensional image models to perform highly undetectable steganography[C]// The International Workshop on Information Hiding. 2010: 161-177. |
[5] | HOLUB V , FRIDRICH J . Designing steganographic distortion using directional filters[C]// Information Forensics and Security(WIFS). 2012: 234-239. |
[6] | SULLIVAN K , MADHOW U , CHANDRASEKARAN S ,et al. Steganalysis of spread spectrum data hiding exploiting cover memory[C]// The International Society for Optics and Photonics,Electronic Imaging. 2005: 38-46. |
[7] | ZOU D , SHI Y Q , SU W ,et al. Steganalysis based on Markov model of thresholded prediction-error image[C]// IEEE International Conference on Multimedia and Expo. 2006: 1365-1368. |
[8] | PEVNY T , BAS P , FRIDRICH J . Steganalysis by subtractive pixel adja-cency matrix[J]. IEEE Transactions on Information Forensics and Security, 2010,5(2): 215-224. |
[9] | 凌轶华, 蔡晓霞, 陈红 . 应用共生矩阵特征的改进自适应 JPEG 隐写[J]. 计算机应用研究, 2014(11): 3490-3493. |
LING Y H , CAI X X , CHEN H . Improved adaptive steganographic algorithm for JPEG images based on co-occurrence matrix feature[J]. Application Research of Computers, 2014(11): 3490-3493. | |
[10] | FRIDRICH J , KODOVSKY J , HOLUB V ,et al. Steganalysis of con-tent-adaptive steganography in spatial domain[C]// The International Workshop on Information Hiding. 2011: 102-117. |
[11] | FRIDRICH J , KODOVSKY J . Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012,7(3): 868-882. |
[12] | CORTES C , VAPNIK V . Support-vector networks[J]. Machine Learning, 1995,20(3): 273-297. |
[13] | LYU S , FARID H . Detecting hidden messages using higher-order statistics and support vector machines[C]// The International Workshop on Information Hiding. 2002: 340-354. |
[14] | KODOVSKY J , FRIDRICH J , HOLUB V . Ensemble classifiers for stegana-lysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012,7(2): 432-444. |
[15] | DUDA R O , HART P E , STORK D G . Pattern classification[M]. New York: WileyPress, 1973. |
[16] | 陈世媛, 汤光明, 高瞻瞻 . 基于权值分配的隐写分析算法[J]. 计算机应用研究, 2016,(11): 3468-3471. |
CHEN S Y , TANG G M , GAO Z Z . Steganalysis method based on weight allocation[J]. Application Research of Computers, 2016(11): 3468-3471. | |
[17] | GOLJAN M , FRIDRICH J , HOLOTYAK T . New blind steganalysis and its implications[C]// The International Society for Optics and Photonics,Electronic Imaging. 2006: 1-13. |
[18] | FRIDRICH J,KODOVSKY J , HOLUB V , et al . Breaking HUGO–the process discovery[C]// The International Workshop on Information Hiding. 2011: 85-101. |
[19] | HOLUB V , FRIDRICH J , DENEMARK T . Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014(1): 1. |
[1] | 任奎, 孟泉润, 闫守琨, 秦湛. 人工智能模型数据泄露的攻击与防御研究综述[J]. 网络与信息安全学报, 2021, 7(1): 1-10. |
[2] | 张青青, 汤红波, 游伟, 李英乐. 基于免疫算法的网络功能异构冗余部署方法[J]. 网络与信息安全学报, 2021, 7(1): 46-56. |
[3] | 张涛, 伍前红, 唐宗勋. 基于比特币区块链的隐蔽信息传输研究[J]. 网络与信息安全学报, 2021, 7(1): 84-92. |
[4] | 王滨, 陈靓, 钱亚冠, 郭艳凯, 邵琦琦, 王佳敏. 面向对抗样本攻击的移动目标防御[J]. 网络与信息安全学报, 2021, 7(1): 113-120. |
[5] | 苗春雨, 范渊, 李晖, 葛凯强, 张小孟. 基于移动Sink的WSN安全数据收集方法[J]. 网络与信息安全学报, 2021, 7(1): 121-129. |
[6] | 陈璐, 汤红波, 游伟, 柏溢. 移动边缘计算安全防御研究[J]. 网络与信息安全学报, 2021, 7(1): 130-142. |
[7] | 孙澄, 胡浩, 杨英杰, 张红旗. 融合宏观与微观的双层威胁分析模型[J]. 网络与信息安全学报, 2021, 7(1): 143-156. |
[8] | 张颖君,刘尚奇,杨牧,张海霞,黄克振. 基于日志的异常检测技术综述[J]. 网络与信息安全学报, 2020, 6(6): 1-12. |
[9] | 熊小兵,舒辉,康绯. 基于融合编译的软件多样化保护方法[J]. 网络与信息安全学报, 2020, 6(6): 13-24. |
[10] | 张鑫,羌卫中,吴月明,邹德清,金海. 基于卷积神经网络恶意安卓应用行为模式挖掘[J]. 网络与信息安全学报, 2020, 6(6): 35-44. |
[11] | 周天昱,申文博,杨男子,李金库,秦承刚,喻望. Docker组件间标准输入输出复制的DoS攻击分析[J]. 网络与信息安全学报, 2020, 6(6): 45-56. |
[12] | 尚菁菁,朱宇佳,刘庆云. 电子邮件安全扩展协议应用分析[J]. 网络与信息安全学报, 2020, 6(6): 69-79. |
[13] | 王标,刘兴洋,许卡,刘汪洋,王克楠,夏宇清. 政府开放数据的国家安全风险评估模型研究[J]. 网络与信息安全学报, 2020, 6(6): 80-87. |
[14] | 熊钢,葛雨玮,褚衍杰,曹卫权. 基于跨域协同的网络空间威胁预警模式[J]. 网络与信息安全学报, 2020, 6(6): 88-96. |
[15] | 吴奇,陈鸿昶. 低故障恢复开销的软件定义网络控制器布局算法[J]. 网络与信息安全学报, 2020, 6(6): 97-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|