网络与信息安全学报 ›› 2017, Vol. 3 ›› Issue (7): 7-24.doi: 10.11959/j.issn.2096-109x.2017.00180
张茜1,2,3,延志伟3,李洪涛3,耿光刚3
修回日期:
2017-07-05
出版日期:
2017-07-01
发布日期:
2017-08-01
作者简介:
张茜(1994-),女,河南杞县人,中国科学院大学硕士生,主要研究方向为网络应用与安全、下一代互联网技术。|延志伟(1985-),男,山西兴县人,博士,中国互联网络信息中心副研究员,主要研究方向为IPv6移动性管理、BGP安全机制、信息中心网络架构。|李洪涛(1977-),男,河北保定人,中国互联网络信息中心高级工程师、总工程师,主要研究方向为 IPv6、网络安全、大数据。|耿光刚(1980-),男,山东泰安人,博士,中国互联网络信息中心研究员,主要研究方向为机器学习、大数据分析和互联网基础资源安全。
基金资助:
Xi ZHANG1,2,3,Zhi-wei YAN3,Hong-tao LI3,Guang-gang GENG3
Revised:
2017-07-05
Online:
2017-07-01
Published:
2017-08-01
Supported by:
摘要:
分析了网络钓鱼欺诈的现状,并对钓鱼检测常用的数据集和评估指标进行了总结。在此基础上,综述了网络钓鱼检测方法,包括黑名单策略、启发式方法、视觉匹配方法、基于机器学习的方法和基于自然语言理解的方法等,对比分析了各类方法的优缺点,进一步指出了钓鱼检测面临的挑战,并展望了钓鱼检测未来的研究趋势。
中图分类号:
张茜,延志伟,李洪涛,耿光刚. 网络钓鱼欺诈检测技术研究[J]. 网络与信息安全学报, 2017, 3(7): 7-24.
Xi ZHANG,Zhi-wei YAN,Hong-tao LI,Guang-gang GENG. Research of phishing detection technology[J]. Chinese Journal of Network and Information Security, 2017, 3(7): 7-24.
表4
网络钓鱼检测技术比较"
类别 | 典型工作 | 优点 | 缺点 | 基本原理 |
黑名单 | PhishNet[59] | ● 扩充了黑名单列表,可检测部分未出现在黑名单中的钓鱼URL● 设计简单,易于实现 | ● 无法检测0-hour钓鱼攻击● 严重依赖原始的黑名单● 借助第三方的工具进行 DNS查询和页面内容匹配,可能引起较大的带宽开销和时间开销 | 基于原始黑名单生成新的URL,扩充了黑名单列表,并通过 URL 分解和相似性计算进行钓鱼URL的检测识别 |
基于域名黑名单的方法[60] | ● 缩短了域名加入黑名单的时间 | ● 依赖于区域文件的可用性● 对 WHOIS 数据库的访问可能会成为整个方法的瓶颈 | 基于恶意域名及其 NS 往往是新的、通常一起管理的启发式想法,利用zone file 的NS信息和 WHOIS 信息实现对域名黑名单的主动扩充 | |
启发式 | CANTINA[44] | ● 可检测0-hour钓鱼攻击● 容易实现 | ● 具有语言依赖性,TF-IDF 对东亚语言的处理效果不好● 查询 Google 会带来时间开销,影响性能● 规则简单,易规避 | 通过使用TF-IDF算法及Google检索结果,结合其他启发式规则(域名注册时间、URL中点的个数等)实现对钓鱼URL的检测识别(使用了 URL 和HTML DOM特征) |
基于用户设备检测的方法[64] | ● 可检测0-hour钓鱼攻击● 方法简单,易实现 | ● 无法准确识别自适应网页设计(RWD)构建的合法网站● 规则过于简单,很容易规避 | 提出了新的启发式规则,主流合法网站往往具有移动和桌面2 个版本的网站服务,而钓鱼网站通常没有,并基于此规则,结合 SVM 算法进行网络钓鱼的检测和识别(使用了 HTML特征) | |
视觉相似性 | Liu等[37] | ● 可检测0-hour钓鱼攻击● 对与合法页面视觉及DOM表示相似的网络钓鱼检测效果很好 | ● 依赖于DOM 的可用性● 使用的合法页面的视觉信息列表的完整性和时效性对钓鱼检测的结果影响较大● 使用图片特征,效率较低 | 使用块级相似性、布局相似性和风格相似性 3 个度量来衡量待检测页面与合法页面之间的视觉相似性,从而判别该页面是否是网络钓鱼页面(使用了网页页面特征) |
基于EMD的视觉相似度方法[41] | ● 可检测0-hour钓鱼攻击● 对具有视觉相似性的钓鱼,检测准确率高● 不依赖于HTML的可用性 | ● 无法检测与目标网页视觉上不相似的钓鱼网站● 需要存储计算大量的合法页面的图像信息 | 将网页图像映射为低分辨率的图像,使用颜色和坐标对图像进行特征表示,利用陆地移动距离计算网页图像之间的特征距离,根据 EMD 值完成网络钓鱼的检测识别(使用了网页页面图像特征) | |
基于嵌套EMD的钓鱼网页检测方法[42] | ● 具有较好的顽健性● 不依赖于HTML的可用性● 考虑了页面中各部分的相对位置因素 | ● 图像分割处理部分复杂度较大 | 将网页图像分割,抽取子图特征并构建网页的ARG,在计算不同 ARG 属性距离的基础上使用嵌套 EMD 算法计算网页相似度 |
表4
网络钓鱼检测技术比较(续表)"
类别 | 典型工作 | 优点 | 缺点 | 基本原理 |
机器学习 | CANTINA+[71] | ● 可检测0-hour钓鱼攻击● 在分类之前使用启发式规则进行过滤,提高了效率● 对所使用的特征进行了性能分析 | ● 使用了 HTML DOM 和第三方服务,受其可用性的限制● 使用了搜索引擎,可能会影响性能 | 利用HTML DOM、搜索引擎和第三方服务提取了 8 个新特征,使用机器学习算法完成钓鱼检测,同时基于启发式规则实现了 2 个过滤器以降低误检率、提高运行速度(使用了URL、HTML特征) |
一种用于检测钓鱼网站和目标的新方法[27] | ● 可检测0-hour钓鱼攻击● 准确率、召回率、精度都很高● 不需要大量数据● 具有语言独立性● 可完全在客户端实现 | ● 对于空的或不可用的网页和保留域名可能产生误判● 对基于IP 的钓鱼URLs的分类精度太低 | 基于钓鱼攻击者在搭建钓鱼页面时的约束及合法网页和钓鱼网页使用关键字的方式不同这两点,提取了 212 个特征,并使用Gradient Boosting进行钓鱼网站的检测(使用了URL和HTML特征) | |
PhishDetector[72] | ● 可检测0-hour 钓鱼攻击● 可从分类模型中提取隐含的知识,可与启发式方法结合● 不依赖第三方的服务(搜索引擎、浏览器历史等) | ● 完全依赖页面内容● 无法检测使用Flash或者图片等(不使用DOM)的钓鱼网页 | 使用SVM 训练钓鱼检测模型,并使用 SVM_DT 算法提取分类精度很高的隐含规则。(使用了URL、HTML DOM特征) | |
基于邮件 profiling特征的鱼叉式网络钓鱼活动的归因与识别[8] | ● 可检测0-hour钓鱼攻击● 不需要大量的标记数据,降低人工标记开销● 高检测率,低误检率 | ● 算法复杂,计算开销较高 | 提出了基于属性图的半监督学习框架,实现对鱼叉式网络钓鱼活动的归因和识别(使用了邮件特征) | |
基于DBSCAN的方法[73] | ● 可检测0-hour钓鱼攻击● 不需要标记数据 | ● 使用了搜索引擎,可能会有时间开销或检索方面的问题 | 利用网页页面之间的链接关系、检索结果的排序关系、文本相似性及页面布局相似性等特征,采用DBSCAN聚类算法进行钓鱼检测。 | |
自然语言处理 | 基于词性分析和词干提取的方法[17] | ● 可有效识别不含链接网络钓鱼邮件 | ● 只针对邮件文本内容,无法检测附件内容● 依赖于已知的钓鱼邮件,无法检测0-hour钓鱼攻击 | 针对不包含任何链接的网络钓鱼邮件,通过对邮件文本进行词性分析和词干提取,然后根据该类邮件所共有的特征对待检测邮件进行打分来判断其是否是钓鱼邮件。(使用了邮件特征) |
知识发现与机器学习结合的检测方法[19] | ● 精度高● 使用的特征较少 | ● 不具有自适应机制 | 提出了钓鱼相加权的概念,将自然语言处理中对文本处理的技术与机器学习结合起来进行网络钓鱼的检测和识别 |
[1] | 国家网络空间安全战略[EB/OL]. . |
National cybersecurity strategy[EB/OL]. . | |
[2] | Anti-Phishing Working Group(APWG). Phishing activity trends report-second quarter 2016[EB/OL]. . |
[3] | WEIDER D Y , NARGUNDKAR S , TIRUTHANI N . A phishing vulnerability analysis of web based systems[C]// Computers and Communications. 2008: 326-331. |
[4] | E.M.C.Corporation. RSA monthly fraud report[EB/OL]. . |
[5] | 中国反钓鱼网站联盟. 2012年中国反钓鱼网站联盟年报[EB/OL]. . |
APAC. Coalition against phishing site report of China in 2012[EB/OL]. . | |
[6] | 中国反钓鱼网站联盟. 2016年9月钓鱼网站处理简报[EB/OL]. . |
APAC. Phishing site processing presentation in september 2016[EB/OL]. . | |
[7] | 中国反钓鱼网站联盟. 中国反钓鱼网站联盟.2015年12月钓鱼网站处理简报[EB/OL]. . |
APAC. Phishing site processing presentation in september 2015[EB/OL]. . | |
[8] | HAN Y F , SHEN Y . Accurate spear phishing campaign attribution and early detection[C]// The 31st Annual ACM Symposium on Applied Computing. 2016: 2079-2086. |
[9] | ALARM S , EL-KHATIB K , . Phishing susceptibility detection through social media analytics[C]// The 9th International Conference on Security of Information and Networks. 2016: 61-64. |
[10] | Krebs on security[EB/OL]. . |
[11] | Anti-Phishing Working Group(APWG). Global phishing survey:trends and domainname use in 2H2014[EB/OL]. . |
[12] | YAN G , EIDENBENZ S , GALLI E . Sms-watchdog:profiling social behaviors of SMS users for anomaly detection[C]// The International Workshop on Recent Advances in Intrusion Detection. 2009: 202-223. |
[13] | NASSAR M , NICCOLINI S , EWALD T . Holistic VoIP intrusion detection and prevention system[C]// The 1st International Conference on Principles,Systems and Applications of IP Telecommunications. 2007: 1-9. |
[14] | SONG J , KIM H , GKELIAS A . iVisher:real-time detection of caller ID spoofing[J]. ETRI Journal, 2014,36(5): 865-875. |
[15] | 彭富明, 张卫丰, 彭寅 . 基于文本特征分析的钓鱼邮件检测[J]. 南京邮电大学学报(自然科学版), 2012(5): 140-145. |
PENG F M , ZHANG W F , PENG Y . Detection of phishing emails based on text characteristic analysis[J]. Journal of Nanjing University of Posts and Telecommunication, 2012(5): 140-145. | |
[16] | HUSáK M , CEGAN J . PhiGARo:automatic phishing detection and incident response framework[C]// Availability,Reliability and Security (ARES). 2014: 295-302. |
[17] | AGGARWAL S , KUMAR V , SUDARSAN S D . Identification and detection of phishing emails using natural language processing techniques[C]// The 7th International Conference on Security of Information and Networks. 2014:217. |
[18] | AKINYELU A A , ADEWUMI A O . Classification of phishing email using random forest machine learning technique[J]. Journal of Applied Mathematics, 2014. |
[19] | YASIN A , ABUHASAN A . An intelligent classification model for phishing email detection[J]. 2016,8(4): 55-72 |
[20] | VERMA R , RAI N . Phish-IDetector:Message-ID based automatic phishing detection[C]// e-Business and Telecommunications (ICETE). 2015(4): 427-434 |
[21] | 黄华军, 钱亮, 王耀钧 . 基于异常特征的钓鱼网站URL检测技术[J]. 信息网络安全, 2012,(01): 23-25,67. |
HUANG H J , QIAN L , WANG Y J . URL Detecting technology of phshing site based on anomalous characte[J]. Netinfo Security, 2012,(1): 23-25. | |
[22] | BLUM A , WARDMAN B , SOLORIO T ,et al. Lexical feature based phishing URL detection using online learning[C]// The 3rd ACM Workshop on Artificial Intelligence and Security. 2010: 54-60. |
[23] | MA J , SAUL L K , SAVAGE S ,et al. Identifying suspicious URLs:an application of large-scale online learning[C]// The 26th Annual International Conference on Machine Learning. 2009: 681-688. |
[24] | MA J , SAUL L K , SAVAGE S ,et al. Beyond blacklists:learning to detect malicious Web sites from suspicious URLs[C]// The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009: 1245-1254. |
[25] | FEROZ M N , MENGEL S . Examination of data,rule generation and detection of phishing URLs using online logistic regression[C]// 2014 IEEE International Conference on Big Data. 2014: 241-250. |
[26] | FEROZ M N , MENGEL S . Phishing URL detection using URL ranking[C]// The IEEE International Congress on Big Data. 2015: 635-638. |
[27] | MARCHAL S , SAARI K , SINGH N ,et al. Know your phish:Novel techniques for detecting phishing sites and their targets[C]// Distributed Computing Systems (ICDCS). 2016: 323-333. |
[28] | RAMESH G , KRISHNAMURTHI I , KUMAR K S S . An efficacious method for detecting phishing webpages through target domain identification[J]. Decision Support Systems, 2014,61: 12-22. |
[29] | ABRAHAM D , RAJ N S . Approximate string matching algorithm for phishing detection[C]// Advances in Computing,Communications and Informatics. 2014: 2285-2290. |
[30] | 何高辉, 邹福泰, 谭大礼 ,等. 基于 SVM 主动学习算法的网络钓鱼检测系统[J]. 计算机工程, 2011,(19): 126-128. |
HE G H , ZOU F T , TAN D L ,et al. Phishing detection system based on SVM active learning algorithm[J]. Computer Engineering, 2011(19): 126-128. | |
[31] | CHIEW K L , CHANG E H , TIONG W K . Utilisation of website logo for phishing detection[J]. Computers &Security, 2015,54: 16-26. |
[32] | GENG G G , LEE X D , ZHANG Y M . Combating phishing attacks via brand identity and authorization features[J]. Security and Communication Networks, 2015,8(6): 888-898. |
[33] | 胡向东, 刘可, 张峰 ,等. 基于页面敏感特征的金融类钓鱼网页检测方法[J]. 网络与信息安全学报, 2016,2(2): 31-38. |
HU X D , LIU K , ZHANG F ,et al. Methods of Financial fishing Web test based on page sensitive characteristics[J]. Chinese Journal of Network and Information Security, 2016,2(2): 35-42. | |
[34] | GENG G G , LEE X D , WANG W ,et al. Favicon-a clue to phishing sites detection[C]// eCrime Researchers Summit (eCRS). 2013: 1-10. |
[35] | PAN Y , DING X . Anomaly based web phishing page detection[C]// Computer Security Applications Conference. 2006: 381-392. |
[36] | ALKHOZAE M G , BATARFI O A . Phishing websites detection based on phishing characteristics in the webpage source code[J]. International Journal of Information and Communication Technology Research, 2011,1(6). |
[37] | WENYIN L , HUANG G , XIAOYUE L ,et al. Detection of phishing webpages based on visual similarity[C]// Special Interest Tracks and Posters of the 14th International Conference on World Wide Web. 2005: 1060-1061. |
[38] | WENYIN L , HUANG G , XIAOYUE L ,et al. Phishing Web page detection[C]// Document Analysis and Recognition. 2005: 560-564. |
[39] | 张卫丰, 周毓明, 许蕾 ,等. 基于匈牙利匹配算法的钓鱼网页检测方法[J]. 计算机学报, 2010,(10): 1963-1975. |
ZHANG W F , ZHOU Y M , XU L ,et al. Financial fishing Web test based on Hungarian matching algorithm[J]. Chinese Journal of Computers, 2010(10): 1963-1975. | |
[40] | 邹学强, 张鹏, 黄彩云 ,等. 基于页面布局相似性的钓鱼网页发现方法[J]. 通信学报, 2016(S1): 116-124. |
ZOU X Q , ZHANG P , HUANG C Y ,et al. Detecting methods of phshing Web based on the page layout[J]. Journal on Comunications, 2016(S1): 116-124. | |
[41] | FU A Y , WENYIN L , DENG X . Detecting phishing Web pages with visual similarity assessment based on earth mover's distance (EMD)[J]. IEEE transactions on dependable and secure computing, 2006,3(4). |
[42] | 曹玖新, 毛波, 罗军舟 ,等. 基于嵌套EMD的钓鱼网页检测算法[J]. 计算机学报, 2009,(5): 922-929. |
CAO J X , MAO B , LUO J Z ,et al. Financial fishing Web test based on nesting EMD[J]. Journal of Computers, 2009(5): 922-929. | |
[43] | TAN C L , CHIEW K L . Phishing website detection using URL-assisted brand name weighting system[C]// Intelligent Signal Processing and Communication Systems (ISPACS). 2014: 54-59. |
[44] | ZHANG Y , HONG J I , CRANOR L F . Cantina:a content-based approach to detecting phishing web sites[C]// The 16th International Conference on World Wide Web. 2007: 639-648. |
[45] | YAN Z , LIU S , WANG T ,et al. A genetic algorithm based model for chinese phishing e-commerce websites detection[C]// The International Conference on HCI in Business,Government and Organizations. 2016: 270-279. |
[46] | 赵加林 . 基于K-Means和SVM的流行中文钓鱼网站识别研究[J]. 软件导刊, 2016(4): 176-178. |
ZHAO J L . Study of popular Chinese phshing site identification based on K-Means and SVM[J]. Software Guide, 2016(4): 176-178. | |
[47] | ZHANG W , JIANG Q , CHEN L ,et al. Two-stage ELM for phishing Web pages detection using hybrid features[J]. World Wide Web, 2016: 1-17. |
[48] | 徐欢潇, 徐慧, 雷丽婷 . 多特征分类识别算法融合的网络钓鱼识别技术[J]. 计算机应用研究, 2017(4): 1129-1132. |
XU H X , XU H , LEI L T . Phishing identification technology with multiple feature classification recognition algorithm[J]. Application Research of Computers, 2017(4): 1129-1132. | |
[49] | PhishTank[EB/OL]. . |
[50] | Millersmiles[EB/OL]. . |
[51] | Spamassassin public corpus[EB/OL]. . |
[52] | MalwarePatrol[EB/OL]. . |
[53] | Open directory[EB/OL]. . |
[54] | Open directory project[EB/OL]. . |
[55] | ABU-NIMEH S , NAPPA D , WANG X ,et al. A comparison of machine learning techniques for phishing detection[C]// The anti-phishing working groups 2nd annual eCrime researchers summit. 2007: 60-69. |
[56] | Spamhaus[EB/OL]. . |
[57] | SURBL[EB/OL]. . |
[58] | Google safe browsing api[EB/OL]. . |
[59] | PRAKASH P , KUMAR M , KOMPELLA R R ,et al. Phishnet:predictive blacklisting to detect phishing attacks[C]// INFOCOM. 2010: 1-5. |
[60] | FELEGYHAZI M , KREIBICH C , PAXSON V . On the potential of proactive domain blacklisting[J]. LEET, 2010,10: 6. |
[61] | KHONJI M , IRAQI Y , JONES A . Phishing detection:a literature survey[J]. IEEE Communications Surveys &Tutorials, 2013,15(4): 2091-2121. |
[62] | SHENG S , WARDMAN B , WARNER G ,et al. An empirical analysis of phishing blacklists[C]// The 6th Conference on Email and Anti-Spam (CEAS). 2009. |
[63] | FLORêNCIO D , HERLEY C . Analysis and improvement of anti-phishing schemes[C]// IFIP International Information Security Conference. 2006: 148-157. |
[64] | LIN I C , CHI Y L , CHUANG H C ,et al. The novel features for phishing based on user device detection[J]. JCP, 2016,11(2): 109-115. |
[65] | JAIN A K , GUPTA B B . Phishing detection:analysis of visual similarity based approaches[J]. Security and Communication Networks, 2017(4): 1-20. |
[66] | BREIMAN L . Random forests[J]. Machine Learning, 2001,45(1): 5-32. |
[67] | PLATT J C . 12 fast training of support vector machines using sequential minimal optimization[J]. Advances in Kernel Methods, 1999: 185-208. |
[68] | QUINLAN J R . C4.5:programs for machine learning[M]. Elsevier, 2014. |
[69] | JOHN G H , LANGLEY P . Estimating continuous distributions in Bayesian classifiers[C]// The Eleventh Conference on Uncertainty in Artificial Intelligence. 1995: 338-345. |
[70] | ABU-NIMEH S , NAPPA D , WANG X ,et al. A comparison of machine learning techniques for phishing detection[C]// The anti-phishing Working Groups 2nd Annual eCrime Researchers Summit. 2007: 60-69. |
[71] | XIANG G , HONG J , ROSE C P ,et al. Cantina+:A feature-rich machine learning framework for detecting phishing Web sites[J]. ACM Transactions on Information and System Security (TISSEC), 2011,14(2): 21. |
[72] | MOGHIMI M , VARJANI A Y . New rule-based phishing detection method[J]. Expert Systems with Applications, 2016,53: 231-242. |
[73] | LIU G , QIU B , WENYIN L . Automatic detection of phishing target from phishing webpage[C]// The 20th International Conference on Pattern Recognition (ICPR). 2010: 4153-4156. |
[74] | VERMA R , SHASHIDHAR N , HOSSAIN N . Detecting phishing emails the natural language way[C]// European Symposium on Research in Computer Security. 2012: 824-841. |
[75] | MICRO T . Mobile phishing:a problem on the horizon[EB/OL]. . |
[76] | JEONG S Y , KOH Y S , DOBBIE G . Phishing detection on Twitter streams[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2016: 141-153. |
[77] | ALBANESIUS C . Gaming apps increase spam,phishing by 50 percent[EB/OL]. , 2010. |
[78] | VIDAS T , OWUSU E , WANG S ,et al. QRishing:the susceptibility of smartphone users to QR code phishing attacks[C]// The International Conference on Financial Cryptography and Data Security. 2013: 52-69. |
[79] | SARIKA S , PAUL V . Parallel phishing attack recognition using software agents[J]. Journal of Intelligent &Fuzzy Systems, 2017,32(5): 3273-3284. |
[80] | CHHABRA S , AGGARWAL A , BENEVENUTO F ,et al. Phi.sh/$ ocial:the phishing landscape through short urls[C]// The 8th Annual Collaboration,Electronic messaging,Anti-Abuse and Spam Conference. 2011: 92-101. |
[81] | 沙泓州, 刘庆云, 柳厅文 ,等. 恶意网页识别研究综述[J]. 计算机学报, 2016(3): 529-542. |
SHA H Z , LIU Q Y , LIU T W ,et al. Review of malicious Web recognition[J]. Journal of Computers, 2016(3): 529-542. |
[1] | 张颖君,刘尚奇,杨牧,张海霞,黄克振. 基于日志的异常检测技术综述[J]. 网络与信息安全学报, 2020, 6(6): 1-12. |
[2] | 付溪,李晖,赵兴文. 网络钓鱼识别研究综述[J]. 网络与信息安全学报, 2020, 6(5): 1-10. |
[3] | 何康,祝跃飞,刘龙,芦斌,刘彬. 敌对攻击环境下基于移动目标防御的算法稳健性增强方法[J]. 网络与信息安全学报, 2020, 6(4): 67-76. |
[4] | 袁福祥,刘粉林,刘翀,刘琰,罗向阳. MLAR:面向IP定位的大规模网络别名解析[J]. 网络与信息安全学报, 2020, 6(4): 77-94. |
[5] | 骆子铭,许书彬,刘晓东. 基于机器学习的TLS恶意加密流量检测方案[J]. 网络与信息安全学报, 2020, 6(1): 77-83. |
[6] | 黄伟,刘存才,祁思博. 针对设备端口链路的LSTM网络流量预测与链路拥塞方案[J]. 网络与信息安全学报, 2019, 5(6): 50-57. |
[7] | 宋蕾, 马春光, 段广晗. 机器学习安全及隐私保护研究进展[J]. 网络与信息安全学报, 2018, 4(8): 1-11. |
[8] | 明拓思宇, 陈鸿昶. 文本摘要研究进展与趋势[J]. 网络与信息安全学报, 2018, 4(6): 1-10. |
[9] | 王正琦,冯晓兵,张驰. 基于两层分类器的恶意网页快速检测系统研究[J]. 网络与信息安全学报, 2017, 3(8): 44-60. |
[10] | 张东,张尧,刘刚,宋桂香. 基于机器学习算法的主机恶意代码检测技术研究[J]. 网络与信息安全学报, 2017, 3(7): 25-32. |
[11] | 胡向东,刘可,张峰,林家富,付俊,郭智慧. 基于页面敏感特征的金融类钓鱼网页检测方法[J]. 网络与信息安全学报, 2017, 3(2): 31-38. |
[12] | 孙博文,黄炎裔,温俏琨,田斌,吴鹏,李祺. 基于静态多特征融合的恶意软件分类方法[J]. 网络与信息安全学报, 2017, 3(11): 68-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|