网络与信息安全学报 ›› 2018, Vol. 4 ›› Issue (8): 1-11.doi: 10.11959/j.issn.2096-109x.2018067
• 综述 • 下一篇
修回日期:
2018-07-02
出版日期:
2018-08-15
发布日期:
2018-10-12
作者简介:
宋蕾(1989-),女,黑龙江牡丹江人,哈尔滨工程大学博士生,主要研究方向为机器学习安全与隐私保护、云计算、网络安全。|马春光(1974-),男,黑龙江双城人,哈尔滨工程大学教授、博士生导师,主要研究方向为分布式密码算法与协议、云计算安全与隐私、格密码、机器学习安全与隐私保护。|段广晗(1994-),男,黑龙江海伦人,哈尔滨工程大学博士生,主要研究方向为深度学习、对抗样本、机器学习。
基金资助:
Lei SONG,Chunguang MA(),Guanghan DUAN
Revised:
2018-07-02
Online:
2018-08-15
Published:
2018-10-12
Supported by:
摘要:
机器学习作为实现人工智能的一种重要方法,在数据挖掘、计算机视觉、自然语言处理等领域得到广泛应用。随着机器学习应用的普及发展,其安全与隐私问题受到越来越多的关注。首先结合机器学习的一般过程,对敌手模型进行了描述。然后总结了机器学习常见的安全威胁,如投毒攻击、对抗攻击、询问攻击等,以及应对的防御方法,如正则化、对抗训练、防御精馏等。接着对机器学习常见的隐私威胁,如训练数据窃取、逆向攻击、成员推理攻击等进行了总结,并给出了相应的隐私保护技术,如同态加密、差分隐私。最后给出了亟待解决的问题和发展方向。
中图分类号:
宋蕾, 马春光, 段广晗. 机器学习安全及隐私保护研究进展[J]. 网络与信息安全学报, 2018, 4(8): 1-11.
Lei SONG, Chunguang MA, Guanghan DUAN. Machine learning security and privacy:a survey[J]. Chinese Journal of Network and Information Security, 2018, 4(8): 1-11.
[1] | GHORBEL A , GHORBEL M , JMAIEL M . Privacy in cloud computing environments:a survey and research challenges[J]. Journal of Supercomputing, 2017,73(6): 2763-2800. |
[2] | SILVER D , HUANG A , MADDISON C J ,et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016,529(7587): 484-489. |
[3] | BARRENO M , NELSON B , SEARS R ,et al. Can machine learning be secure?[C]// ACM Symposium on Information,Computer and Communications Security. 2006: 16-25. |
[4] | KEARNS M , LI M . Learning in the presence of malicious errors[J]. SIAM Journal on Computing, 1993,22(4): 807-837. |
[5] | BIGGIO B , NELSON B , LASKOV P . Support vector machines under adversarial label noise[J]. Journal of Machine Learning Research, 2011,20(3): 97-112. |
[6] | BIGGIO B , NELSON B , LASKOV P . Poisoning attacks against support vector machines[C]// International Coference on International Conference on Machine Learning. 2012: 1467-1474. |
[7] | MEI S , ZHU X . Using machine teaching to identify optimal training-set attacks on machine learners[C]// AAAI. 2015: 2871-2877. |
[8] | BIGGIO B , DIDACI L , FUMERA G ,et al. Poisoning attacks to compromise face templates[C]// International Conference on Biometrics. 2013: 1-7. |
[9] | KLOFT M , LASKOV P . Security analysis of online anomaly detection[J]. Journal of Machine Learning Research, 2010,13(1): 3681-3724. |
[10] | C SZEGEDY , W ZAREMBA , I SUTSKEVER , ,et al. Intriguing properties of neural networks[C]// 2014 International Conference on Learning Representations.Computational and Biological Learning Society. 2014. |
[11] | PAPERNOT N , MC D P , SINHA A ,et al. Towards the science of security and privacy in machine learning[J]. arXiv preprint arXiv:1611.03814, 2016. |
[12] | GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples[C]// International Conference on Learning Representations. 2015. |
[13] | KURAKIN A , GOODFELLOW I , BENGIO S . Adversarial machine learning at scale[J]. arXiv preprint arXiv:1611.01236, 2017. |
[14] | DONG Y P , LIAO F Z , PANG T Y ,et al. Boosting adversarial attacks with momentum[J]. arXiv preprint arXiv:1710.06081, 2017. |
[15] | MIYATO T , MAEDA S , KOYAMA M ,et al. Virtual adversarial training:a regularization method for supervised and semi-supervised learning[J]. arXiv preprint 1704.03976, 2017. |
[16] | MOOSAVI-DEZFOOLI S , FAWZI A , FROSSARD P . DeepFool:a simple and accurate method to fool deep neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2574-2582. |
[17] | PAPERNOT N , MCDANIEL P , JHA S ,et al. The limitations of deep learning in adversarial settings[C]// IEEE European Symposium on Security and Privacy. 2016: 372-387. |
[18] | SU J , VARGAS D V , KOUICHI S . One pixel attack for fooling deep neural networks[J]. arXiv preprint arXiv:1710.08864, 2017. |
[19] | LOWD D , MEEK C . Adversarial learning[C]// The eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. 2005: 641-647. |
[20] | MOOSAVI-DEZFOOLI S M , FAWZI A , FAWZI O ,et al. Universal adversarial perturbations[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2017. |
[21] | PAPERNOT N , MCDANIEL P , GOODFELLOW I ,et al. Practical black-box attacks against machine learning[C]// 2017 ACM on Asia Conf on Computer and Communications Security. 2017: 506-519. |
[22] | PAPERNOT N , MCDANIEL P , GOODFELLOW I . Transferability in machine learning:from phenomena to black-box attacks using adversarial samples[J]. arXiv preprint arXiv:1605.07277, 2016. |
[23] | GU S X , RIGAZIO L . Towards deep neural network architectures robust to adversarial examples[J]. arXiv preprint arXiv:1412.5068, 2014. |
[24] | LYU C , HUANG K , LIANG H N . A unified gradient regularization family for adversarial examples[C]// IEEE International Conference on Data Mining. 2016: 301-309. |
[25] | ZHAO Q Y , GRIFFIN L D . Suppressing the unusual:towards robust cnns using symmetric activation functions[J]. arXiv preprint arXiv:1603.05145, 2016. |
[26] | ROZSA A , GUNTHER M , BOULT T E . Towards robust deep neural networks with BANG[J]. arXiv preprint arXiv:1612.00138, 2016. |
[27] | GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples[C]// International Conference on Learning Representations. Computational and Biological Learning Society, 2015. |
[28] | HUANG R , XU B , SCHUURMANS D ,et al. Learning with a strong adversary[J]. arXiv preprint arXiv:1511.03034, 2015. |
[29] | TRAMèR F , KURAKIN A , PAPERNOT N ,et al. ensemble adversarial training:attacks and defenses[J]. arXiv preprint arXiv:1705.07204, 2017. |
[30] | PAPERNOT N , MCDANIEL P , WU X ,et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]// IEEE Symp on Security and Privacy. 2016: 582-597. |
[31] | HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015. |
[32] | PAPERNOT N , MCDANIEL P . Extending defensive distillation[J]. arXiv preprint arXiv:1705.05264, 2017. |
[33] | BULòS R , BIGGIO B , PILLAI I ,et al. Randomized prediction games for adversarial machine learning[J]. IEEE transactions on neural networks and learning systems, 2017,28(11): 2466-2478. |
[34] | HARDT M , MEGIDDO N , PAPADIMITRIOU C ,et al. Strategic classification[C]// 2016 ACM conference on innovations in theoretical computer science. 2016: 111-122. |
[35] | BRüCKNER M , KANZOW C , SCHEFFER T . Static prediction games for adversarial learning problems[J]. Journal of Machine Learning Research, 2012,13(Sep): 2617-2654. |
[36] | METZEN J H , GENEWEIN T , FISCHER V ,et al. On detecting adversarial perturbations[J]. arXiv preprint arXiv:1702.04267, 2017. |
[37] | LU JIAJUN , ISSARANON T , FORSYTH D . SAFETYNET:Detecting and rejecting adversarial examples robustly[J]. arXiv preprint arXiv:1704.00103, 2017. |
[38] | HITAJ B , ATENIESE G , PEREZ-CRUZ F . Deep models under the GAN:information leakage from collaborative deep learning[C]// ACM Sigsac Conference. 2017: 603-618. |
[39] | FREDRIKSON M , LANTZ E , JHA S ,et al. Privacy in pharmacogenetics:an end-to-end case study of personalized warfarin dosing[C]// The 23rd Usenix Security Symposium. 2014: 17-32. |
[40] | FREDRIKSON M , JHA S , RISTENPART T . Model inversion attacks that exploit confidence information and basic countermeasures[C]// The 22nd ACM Sigsac Conference on Computer and Communications Security. 2015: 1322-1333. |
[41] | ATENIESE G , MANCINI L V , SPOGNARDI A ,et al. Hacking smart machines with smarter ones:How to extract meaningful data from machine learning classifiers[J]. International Journal of Security and Networks, 2015,10(3): 137-150. |
[42] | SHOKRI R , STRONATI M , SONG C ,et al. Membership inference attacks against machine learning models[J]. arXiv preprint arXiv:1610.05820, 2016. |
[43] | TRAMER F , ZHANG F , JUELS A ,et al. Stealing machine learning models via prediction apis[J]. arXiv preprint arXiv:1609.02943, 2016. |
[44] | GENTRY , CRAIG , Fully homomorphic encryption using ideal lattices[J]. Stoc, 2009,9(4): 169-178. |
[45] | DOWLIN N , RAN G B , LAINE K ,et al. CryptoNets:applying neural networks to encrypted data with high throughput and accuracy[C]// Radio and Wireless Symposium. 2016: 76-78. |
[46] | HESAMIFARD E , TAKABI H , GHASEMI M ,et al. Privacy-preserving machine learning in cloud[C]// The 2017 on Cloud Computing Security Workshop. 2017: 39-43. |
[47] | BARYALAI M , JANG-JACCARD J , LIU D . Towards privacy-preserving classification in neural networks[C]// IEEE Privacy,Security and Trust. 2017: 392-399. |
[48] | XIE P , BILENKO M , FINLEY T ,et al. Crypto-nets:neural networks over encrypted data[J]. Computer Science, 2014. |
[49] | STONE M H . The generalized weierstrass approximation theorem[J]. Mathematics Magazine, 1948,21(4): 167-184. |
[50] | ZHANG Q , YANG L , CHEN Z . Privacy preserving deep computation model on cloud for big data feature learning[J]. IEEE Transactions on Computers, 2016,65(5): 1351-1362. |
[51] | DWORK C , MCSHERRY F , NISSIM K ,et al. Calibrating noise to sensitivity in private data analysis[C]// The Third conference on Theory of Cryptography. 2006: 265-284. |
[52] | ABADI M , CHU A , GOODFELLOW I ,et al. Deep learning with differential privacy[C]// 2016 ACM Sigsac Conference on Computer and Communications Security. 2016: 308-318. |
[53] | PAPERNOT N , ABADI M , ERLINGSSON U ,et al. Semi- supervised knowledge transfer for deep learning from private training data[J]. arXiv preprint arXiv:1610.05755, 2016. |
[54] | BEAULIEUJONES B K , WU Z S , WILLIAMS C J ,et al. Privacy-preserving generative deep neural networks support clinical data sharing[J]. bioRxiv, 2017. |
[55] | 郭鹏, 钟尚平, 陈开志 ,等. 差分隐私 GAN 梯度裁剪阈值的自适应选取方法[J]. 网络与信息安全学报, 2018,4(5): 10-20. |
GUO P , ZHONG S P , CHEN K Z ,et al. Adaptive selection method of differential privacy[J]. Chinese Journal of Network and Information Security, 2018,4(5): 10-20. | |
[56] | SHOKRI R , SHMATIKOV V . Privacy-preserving deep learning[C]// The 22nd ACM SIGSAC Conference on Computer and Communications Security. 2015: 1310-1321. |
[57] | LIU M , JIANG H , CHEN J ,et al. A collaborative privacy-preserving deep learning system in distributed mobile environment[C]// International Conference on Computational Science and Computational Intelligence. 2017: 192-197. |
[58] | LE T P , AONO Y , HAYASHI T ,et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics & Security, 2018,13(5): 1333-1345. |
[59] | MCMAHAN B , RAMAGE D . Federated learning:collaborative machine learning without centralized training data[J]. Google Research Blog, 2017. |
[60] | BONAWITZ K , IVANOV V , KREUTER B ,et al. Practical secure aggregation for privacy-preserving machine learning[C]// 2017 ACM Sigsac Conference on Computer and Communications Security. 2017: 1175-1191. |
[61] | MCMAHAN H B , MOORE E , RAMAGE D ,et al. Federated learning of deep networks using model averaging[J]. arXiv preprint arXiv:1502.01710v5, 2016. |
[62] | OSSIA S A , SHAMSABADI A S , TAHERI A ,et al. A hybrid deep learning architecture for privacy-preserving mobile analytics[J]. arXiv preprint arXiv:1703.02952, 2017. |
[1] | 任奎, 孟泉润, 闫守琨, 秦湛. 人工智能模型数据泄露的攻击与防御研究综述[J]. 网络与信息安全学报, 2021, 7(1): 1-10. |
[2] | 沈剑, 周天祺, 王晨, 杨惠杰. 面向边缘计算的隐私保护密钥分配协议[J]. 网络与信息安全学报, 2021, 7(1): 93-100. |
[3] | 张颖君,刘尚奇,杨牧,张海霞,黄克振. 基于日志的异常检测技术综述[J]. 网络与信息安全学报, 2020, 6(6): 1-12. |
[4] | 俞艺涵,付钰,吴晓平. 基于多层模糊综合评估的隐私保护效果评估方法[J]. 网络与信息安全学报, 2020, 6(6): 121-127. |
[5] | 付溪,李晖,赵兴文. 网络钓鱼识别研究综述[J]. 网络与信息安全学报, 2020, 6(5): 1-10. |
[6] | 王昊,吴天昊,朱孔林,张琳. 交叉口场景下基于区块链技术的匿名车辆身份认证方案[J]. 网络与信息安全学报, 2020, 6(5): 27-35. |
[7] | 韩磊,刘吉强,王健,石波,和旭东. 高安全属性价值设备威胁态势量化评估方法[J]. 网络与信息安全学报, 2020, 6(5): 54-66. |
[8] | 乔康,汤红波,游伟,李海涛. 高效安全的可审计盲混币服务方案[J]. 网络与信息安全学报, 2020, 6(4): 23-36. |
[9] | 何康,祝跃飞,刘龙,芦斌,刘彬. 敌对攻击环境下基于移动目标防御的算法稳健性增强方法[J]. 网络与信息安全学报, 2020, 6(4): 67-76. |
[10] | 袁福祥,刘粉林,刘翀,刘琰,罗向阳. MLAR:面向IP定位的大规模网络别名解析[J]. 网络与信息安全学报, 2020, 6(4): 77-94. |
[11] | 张煜,吕锡香,邹宇聪,李一戈. 基于生成对抗网络的文本序列数据集脱敏[J]. 网络与信息安全学报, 2020, 6(4): 109-119. |
[12] | 何贤芒. 基于差分隐私保护技术的多方求和查询方法[J]. 网络与信息安全学报, 2020, 6(3): 14-18. |
[13] | 李少卓,王娜,杜学绘. 按需披露的区块链隐私保护机制[J]. 网络与信息安全学报, 2020, 6(3): 19-29. |
[14] | 赖慧彬,许力,曾雅丽,朱瑞. 基于椭圆曲线的ElGamal型位置隐私保护方案[J]. 网络与信息安全学报, 2020, 6(3): 30-38. |
[15] | 段广晗,马春光,宋蕾,武朋. 深度学习中对抗样本的构造及防御研究[J]. 网络与信息安全学报, 2020, 6(2): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|