网络与信息安全学报 ›› 2020, Vol. 6 ›› Issue (5): 36-53.doi: 10.11959/j.issn.2096-109x.2020071
修回日期:
2020-05-12
出版日期:
2020-10-15
发布日期:
2020-10-19
作者简介:
刘西蒙(1988- ),男,陕西西安人,博士,福州大学研究员、博士生导师,主要研究方向为隐私计算、密文数据挖掘、大数据隐私保护、可搜索加密|谢乐辉(1997- ),男,福建建瓯人,福州大学硕士生,主要研究方向为人工智能安全|王耀鹏(1995- ),男,福建泉州人,福州大学硕士生,主要研究方向为人工智能安全|李旭如(1995- ),女,安徽宣城人,华东师范大学博士生,主要研究方向为无线通信网络、网络空间安全
基金资助:
Ximeng LIU1,2(),Lehui XIE1,Yaopeng WANG1,Xuru LI3
Revised:
2020-05-12
Online:
2020-10-15
Published:
2020-10-19
Supported by:
摘要:
对抗样本是被添加微小扰动的原始样本,用于误导深度学习模型的输出决策,严重威胁到系统的可用性,给系统带来极大的安全隐患。为此,详细分析了当前经典的对抗攻击手段,主要包括白盒攻击和黑盒攻击。根据对抗攻击和防御的发展现状,阐述了近年来国内外的相关防御策略,包括输入预处理、提高模型鲁棒性、恶意检测。最后,给出了未来对抗攻击与防御领域的研究方向。
中图分类号:
刘西蒙,谢乐辉,王耀鹏,李旭如. 深度学习中的对抗攻击与防御[J]. 网络与信息安全学报, 2020, 6(5): 36-53.
Ximeng LIU,Lehui XIE,Yaopeng WANG,Xuru LI. Adversarial attacks and defenses in deep learning[J]. Chinese Journal of Network and Information Security, 2020, 6(5): 36-53.
表1
对抗攻击方法总结 Table 1 Summary of adversarial attacks"
威胁模型 | 攻击算法 | 有无目标 | 扰动范数 | 攻击类型 |
L-BFGS攻击[ | 定向 | 梯度攻击 | ||
FGSM攻击[ | 非定向 | 梯度攻击 | ||
BIM攻击[ | 非定向 | 梯度攻击 | ||
白盒 | JSMA攻击[ | 定向 | 梯度攻击 | |
C&W攻击[ | 定向 | 梯度攻击 | ||
通用对抗扰动攻击[ | 非定向 | 迁移攻击 | ||
Deepfool攻击[ | 非定向 | 梯度攻击 | ||
单像素攻击[ | 非定向 | 置信度攻击 | ||
EOT攻击[ | 定向 | 迁移攻击 | ||
黑盒 | 边界攻击[ | 定向、非定向 | 决策攻击 | |
有偏边界攻击[ | 定向、非定向 | 决策攻击 | ||
零阶优化攻击[ | 定向、非定向 | 置信度攻击 |
表2
防御方法总结 Table 2 A summary of adversarial defenses"
类别 | 方法 | 优点 | 缺点 |
文献[ | 可以预防未知攻击,防止模型过拟合 | 对扰动大小敏感 | |
文献[ | 不依赖混淆梯度[ | 需大量的简单防御作为基础 | |
预处理 | 文献[ | 具有较强的泛化能力 | 不能防御白盒攻击,去噪能力依赖于模型的表达能力 |
文献[ | 无须重新训练模型和改变模型架构 | 对抗生成网络的重构能力受限,在数据集CIFAR-10[ | |
文献[ | 简单,容易补充到已有的防御系统中,可以防御未知攻击 | 依赖超分辨率网络的表达能力 | |
文献[ | 能够在大数据集 ImageNet[ | 需要重新进行模型架构修改,并进行对抗训练,计算开销较大 | |
文献[ | 简单,不依赖对抗样本和数据增强 | 不同数据集不能够自适应,需要调整参数 | |
提高模型鲁棒性 | 文献[ | 引入注意力机提促使模型学习鲁棒性特征 | 需要重新进行模型架构修改,并进行对抗训练,计算开销较大 |
文献[ | 特征去噪模块化,添加去噪模块简单 | 修改现有模型,并进行对抗训练,开销较大 | |
文献[ | 防御未知攻击、不受数据集规模影响、无须修改原有模型架构 | 需要对原有数据集进行映射,并进行对抗训练 | |
文献[ | 操作简单、开销较低、模型无关 | 图像旋转角度不能够自适应 | |
恶意检测 | 文献[ | 阻止对手生成对抗样本 | 不能够防御迁移攻击,需要存储用户查询记录 |
文献[ | 简单、可集成到现有防御系统中 | 依赖模型的内部信息 | |
文献[ | 根据扰动大小自适应去噪、模型无关 | 不适用只改变小部分像素值的攻击算法 |
[34] | LI X , JI S , HAN M ,et al. Adversarial examples versus cloud-based detectors:a black-box empirical study[J]. IEEE Transactions on Dependable and Secure Computing, 2019 |
[35] | WEI X , LIANG S , CHEN N ,et al. Transferable adversarial attacks for image and video object detection[J]. arXiv preprint arXiv:1811.12641, 2018 |
[36] | GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial nets[C]// Advances in Neural Information Processing Systems. 2014: 2672-2680. |
[37] | REN S , HE K , GIRSHICK R ,et al. Faster r-CNN:Towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems. 2015: 91-99. |
[38] | LIU W , ANGUELOV D , ERHAN D ,et al. SSD:single shot multibox detector[C]// European Conference on Computer Vision. 2016: 21-37. |
[39] | THYS S , VAN RANST W , GOEDEMé T . Fooling automated surveillance cameras:adversarial patches to attack person detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019. |
[40] | REDMON J , FARHADI A . YOLO9000:better,faster,stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271. |
[41] | EVTIMOV I , EYKHOLT K , FERNANDES E ,et al. Robust physical-world attacks on deep learning models[J]. arXiv preprint arXiv:1707.08945, 2017 |
[42] | LU J , SIBAI H , FABRY E ,et al. Standard detectors aren’t (currently) fooled by physical adversarial stop signs[J]. arXiv preprint arXiv:1710.03337, 2017 |
[43] | EYKHOLT K , EVTIMOV I , FERNANDES E ,et al. Note on attacking object detectors with adversarial stickers[J]. arXiv preprint arXiv:1712.08062, 2017 |
[44] | CHEN S T , CORNELIUS C , MARTIN J ,et al. Shapeshifter:robust physical adversarial attack on faster r-CNN object detector[C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2018: 52-68. |
[45] | BROWN T B,MANé D , ROY A ,et al. Adversarial Patch[J]. CoRR,abs/1712.09665:2017. |
[46] | HENDRIK METZEN J , CHAITHANYA KUMAR M , BROX T ,et al. Universal adversarial perturbations against semantic image segmentation[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 2755-2764. |
[47] | XIE C , WANG J , ZHANG Z ,et al. Adversarial examples for semantic segmentation and object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 1369-1378. |
[1] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems. 2012: 1097-1105. |
[2] | DAHL G E , YU D , DENG L ,et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio,Speech,and Language Processing, 2011,20: 30-42. |
[48] | CISSE M , ADI Y , NEVEROVA N ,et al. Houdini:Fooling deep structured prediction models[J]. arXiv preprint arXiv:1707.05373, 2017 |
[49] | SHARIF M , BHAGAVATULA S , BAUER L ,et al. Accessorize to a crime:Real and stealthy attacks on state-of-the-art face recognition[C]// Proceedings of the 2016 ACM Sigsac Conference on Computer and Communications Security. 2016: 1528-1540. |
[3] | HINTON G , DENG L , YU D ,et al. Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012,29: 82-97. |
[4] | COLLOBERT R , WESTON J . A unified architecture for natural language processing:deep neural networks with multitask learning[C]// Proceedings of the 25th International Conference on Machine Learning. 2008: 160-167. |
[50] | ZHOU Z , TANG D , WANG X ,et al. Invisible mask:Practical attacks on face recognition with infrared[J]. arXiv preprint arXiv:1803.04683, 2018 |
[51] | WANG Q , GUO W , ZHANG K ,et al. Adversary resistant deep neural networks with an application to malware detection[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 1145-1153. |
[52] | SRIVASTAVA N , HINTON G , KRIZHEVSKY A ,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15: 1929-1958. |
[53] | PRAKASH A , MORAN N , GARBER S ,et al. Deflecting adversarial attacks with pixel deflection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8571-8580. |
[5] | DAHL G E , STOKES J W , DENG L ,et al. Large-scale malware classification using random projections and neural networks[C]// 2013 IEEE International Conference on Acoustics,Speech and Signal Processing. 2013: 3422-3426. |
[6] | SILVER D , HUANG A , MADDISON C J ,et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016,529:484. |
[54] | HO J , KANG D-K . Pixel Redrawn For A Robust Adversarial Defense[J]. |
[55] | DZIUGAITE G K , GHAHRAMANI Z , ROY D M . A study of the effect of jpg compression on adversarial images[J]. arXiv preprint arXiv:1608.00853, 2016 |
[7] | VINYALS O , BABUSCHKIN I , CZARNECKI W M ,et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019,575: 350-354. |
[8] | DENG J , DONG W , SOCHER R ,et al. Imagenet:a large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009: 248-255. |
[56] | DAS N , SHANBHOGUE M , CHEN S T ,et al. Keeping the bad guys out:Protecting and vaccinating deep learning with jpeg compression[J]. arXiv preprint arXiv:1705.02900, 2017 |
[57] | GUO C , RANA M , CISSE M ,et al. Countering adversarial images using input transformations[J]. arXiv preprint arXiv:1711.00117, 2017 |
[9] | LECUN Y , BOSER B , DENKER J S ,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1: 541-551. |
[10] | SZEGEDY C , ZAREMBA W , SUTSKEVER I ,et al. Intriguing properties of neural networks[J]. arXiv preprint arXiv:1312.6199, 2013 |
[58] | RUDIN L I , OSHER S , FATEMI E . Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992,60: 259-268. |
[59] | EFROS A A , FREEMAN W T . Image quilting for texture synthesis and transfer[C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. 2001: 341-346. |
[60] | XU W , EVANS D , QI Y . Feature squeezing:Detecting adversarial examples in deep neural networks[J]. arXiv preprint arXiv:1704.01155, 2017 |
[61] | BUADES A , COLL B , MOREL J M . A non-local algorithm for image denoising[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 2005: 60-65. |
[62] | RAFF E , SYLVESTER J , FORSYTH S ,et al. Barrage of random transforms for adversarially robust defense[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 6528-6537. |
[63] | ANTONINI M , BARLAUD M , MATHIEU P ,et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1992,1: 205-220. |
[64] | HUANG T , YANG G , TANG G . A fast two-dimensional median filtering algorithm[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1979,27: 13-18. |
[65] | HE W , WEI J , CHEN X ,et al. Adversarial example defense:Ensembles of weak defenses are not strong[C]// 11th $$USENIX$$ Workshop on Offensive Technologies ($$WOOT$$ 17), 2017. |
[11] | GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014 |
[12] | MOOSAVI-DEZFOOLI S-M , FAWZI A , FAWZI O ,et al. Universal adversarial perturbations[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1765-1773. |
[66] | AKHTAR N , LIU J , MIAN A . Defense against universal adversarial perturbations[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3389-3398. |
[67] | CORTES C , VAPNIK V . Support-vector networks[J]. Machine Learning, 1995,20: 273-297. |
[13] | SU J , VARGAS D V , SAKURAI K . One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019,23: 828-841. |
[14] | CARLINI N , WAGNER D . Adversarial examples are not easily detected:Bypassing ten detection methods[C]// Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. 2017: 3-14. |
[68] | VINCENT P , LAROCHELLE H , BENGIO Y ,et al. Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th International Conference on Machine Learning. 2008: 1096-1103. |
[69] | LIAO F , LIANG M , DONG Y ,et al. Defense against adversarial attacks using high-level representation guided denoiser[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1778-1787. |
[15] | ATHALYE A , CARLINI N . On the robustness of the CVPR 2018 white-box adversarial example defenses[J]. arXiv preprint arXiv:1804.03286, 2018 |
[16] | ATHALYE A , CARLINI N , WAGNER D . Obfuscated gradients give a false sense of security:Circumventing defenses to adversarial examples[J]. arXiv preprint arXiv:1802.00420, 2018 |
[70] | RONNEBERGER O , FISCHER P , BROX T . U-net:convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-assisted Intervention. 2015: 234-241. |
[71] | SAMANGOUEI P , KABKAB M , CHELLAPPA R . Defense-gan:protecting classifiers against adversarial attacks using generative models[J]. arXiv preprint arXiv:1805.06605, 2018 |
[17] | FLETCHER R . Practical methods of optimization[M]. John Wiley& Sons, 2013. |
[18] | KURAKIN A , GOODFELLOW I , BENGIO S . Adversarial machine learning at scale[J]. arXiv preprint arXiv:1611.01236, 2016 |
[72] | KRIZHEVSKY A , NAIR V , HINTON G . CIFAR-10 (Canadian Institute for Advanced Research)[D]. Toronto:University of Toronto, 2009. |
[73] | YANN L , BERNHARD B , JOHN S D ,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551. |
[19] | PAPERNOT N , MCDANIEL P , JHA S ,et al. The limitations of deep learning in adversarial settings[C]// 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 2016: 372-387. |
[20] | CARLINI N , WAGNER D . Towards evaluating the robustness of neural networks[C]// 2017 IEEE Symposium on Security and Privacy (SP). 2017: 39-57. |
[74] | BAO R , LIANG S , WANG Q . Featurized Bidirectional GAN:adversarial defense via adversarially learned semantic inference[J]. arXiv preprint arXiv:1805.07862, 2018 |
[75] | DUMOULIN V , BELGHAZI I , POOLE B ,et al. Adversarially learned inference[J]. arXiv preprint arXiv:1606.00704, 2016 |
[76] | DONAHUE J , KR?HENBüHL P , DARRELL T . Adversarial feature learning[J]. arXiv preprint arXiv:1605.09782, 2016 |
[21] | MOOSAVI-DEZFOOLI S-M , FAWZI A , FROSSARD P . Deepfool:a simple and accurate method to fool deep neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2574-2582. |
[22] | ATHALYE A , ENGSTROM L , ILYAS A ,et al. Synthesizing robust adversarial examples[J]. arXiv preprint arXiv:1707.07397, 2017 |
[77] | MUSTAFA A , KHAN S H , HAYAT M ,et al. Image super-resolution as a defense against adversarial attacks[J]. IEEE Transactions on Image Processing, 2019,29: 1711-1724. |
[78] | LIM B , SON S , KIM H ,et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 136-144. |
[23] | MCLAREN K . XIII—The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula[J]. Journal of the Society of Dyers and Colourists, 1976,92: 338-341. |
[24] | CHEN P-Y , ZHANG H , SHARMA Y ,et al. Zoo:zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]// Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. 2017: 15-26. |
[79] | CHANG S G , YU B , VETTERLI M . Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000,9: 1532-1546. |
[80] | IOFFE S , SZEGEDY C . Batch normalization:Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015 |
[81] | MADRY A , MAKELOV A , SCHMIDT L ,et al. Towards deep learning models resistant to adversarial attacks[J]. arXiv preprint arXiv:1706.06083, 2017 |
[82] | CHANG T J , HE Y , LI P . Efficient Two-Step Adversarial Defense for Deep Neural Networks[J]. arXiv preprint arXiv:1810.03739, 2018 |
[83] | HUANG R , XU B , SCHUURMANS D ,et al. Learning with a strong adversary[J]. CoRR,abs/1511.03034:2015. |
[84] | SHAHAM U , YAMADA Y , NEGAHBAN S . Understanding adversarial training:Increasing local stability of supervised models through robust optimization[J]. Neurocomputing, 2018,307: 195-204,. |
[85] | KANNAN H , KURAKIN A , GOODFELLOW I . Adversarial logit pairing[J]. arXiv preprint arXiv:1803.06373, 2018 |
[86] | TRAMèR F , KURAKIN A , PAPERNOT N ,et al. Ensemble adversarial training:Attacks and defenses[J]. arXiv preprint arXiv:1705.07204, 2017 |
[25] | KINGMA D P , BA J . Adam:A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014 |
[26] | BRENDEL W , RAUBER J , BETHGE M . Decision-based adversarial attacks:reliable attacks against black-box machine learning models[J]. arXiv preprint arXiv:1712.04248, 2017 |
[87] | LI P , YI J , ZHOU B ,et al. Improving the Robustness of Deep Neural Networks via Adversarial Training with Triplet Loss[J]. arXiv preprint arXiv:1905.11713, 2019 |
[88] | SONG C , HE K , WANG L ,et al. Improving the generalization of adversarial training with domain adaptation[J]. arXiv preprint arXiv:1810.00740, 2018 |
[27] | BRUNNER T , DIEHL F , LE M T ,et al. Guessing smart:biased sampling for efficient black-box adversarial attacks[C]// Proceedings of the IEEE International Conference on Computer Vision. 2019: 4958-4966. |
[28] | PERLIN K . An image synthesizer[J]. ACM Siggraph Computer Graphics, 1985,19: 287-296. |
[89] | ROZSA A , GUNTHER M , Boult T E . Towards robust deep neural networks with BANG[J]. arXiv preprint arXiv:1612.00138, 2016 |
[90] | TOMAR V S , ROSE R C . Manifold regularized deep neural networks[C]// Fifteenth Annual Conference of the International Speech Communication Association. 2014. |
[29] | CHEN J , JORDAN M I , WAINWRIGHT M J . HopSkipJumpAttack:a query-efficient decision-based attack[J]. arXiv preprint arXiv:1904.02144,3:2019, |
[30] | KURAKIN A , GOODFELLOW I , BENGIO S . Adversarial examples in the physical world[J]. arXiv preprint arXiv:1607.02533, 2016 |
[91] | NETZER Y , WANG T , COATES A ,et al. Reading digits in natural images with unsupervised feature learning[R]. 2011. |
[92] | SANKARANARAYANAN S , JAIN A , CHELLAPPA R ,et al. Regularizing deep networks using efficient layerwise adversarial training[C]// Thirty-Second AAAI Conference on Artificial Intelligence. 2018: |
[31] | SZEGEDY C , VANHOUCKE V , IOFFE S ,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2818-2826. |
[32] | PAPERNOT N , MCDANIEL P , GOODFELLOW I ,et al. Practical black-box attacks against machine learning[C]// Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. 2017: 506-519. |
[93] | LIU C , JAJA J . Feature prioritization and regularization improve standard accuracy and adversarial robustness[J]. arXiv preprint arXiv:1810.02424, 2018 |
[94] | PAPERNOT N , MCDANIEL P , WU X ,et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]// 2016 IEEE Symposium on Security and Privacy (SP). 2016: 582-597. |
[95] | HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015 |
[96] | CARLINI N , WAGNER D . Defensive distillation is not robust to adversarial examples[J]. arXiv preprint arXiv:1607.04311, 2016 |
[97] | XIE C , WU Y , MAATEN L V D ,et al. Feature denoising for improving adversarial robustness[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 501-509. |
[98] | GAO J , WANG B , LIN Z ,et al. Masking deep neural network models for robustness against adversarial samples[J]. arXiv preprint arXiv:1702.06763, |
[99] | SUN B , TSAI N-H , LIU F ,et al. Adversarial Defense by Stratified Convolutional Sparse Coding[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 11447-11456. |
[100] | CHOUDHURY B , SWANSON R , HEIDE F ,et al. Consensus convolutional sparse coding[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 4280-4288. |
[101] | GU S , RIGAZIO L . Towards deep neural network architectures robust to adversarial examples[J]. arXiv preprint arXiv:1412.5068, 2014 |
[102] | RIFAI S , VINCENT P , MULLER X ,et al. Contractive auto-encoders:explicit invariance during feature extraction[C]// Proceedings of the 28th International Conference on International Conference on Machine Learning. 2011: 833-840. |
[103] | HOSSEINI H , CHEN Y , KANNAN S ,et al. Blocking transferability of adversarial examples in black-box learning systems[J]. arXiv preprint arXiv:1703.04318, 2017 |
[104] | TIAN S , YANG G , CAI Y . Detecting adversarial examples through image transformation[C]// Thirty-Second AAAI Conference on Artificial Intelligence, 2018. |
[105] | CHEN S , CARLINI N , WAGNER D . Stateful detection of black-box adversarial attacks[J]. arXiv preprint arXiv:1907.05587, 2019 |
[106] | ILYAS A , ENGSTROM L , ATHALYE A ,et al. Black-box adversarial attacks with limited queries and information[J]. arXiv preprint arXiv:1804.08598, 2018 |
[107] | METZEN J H , GENEWEIN T , FISCHER V ,et al. On detecting adversarial perturbations[J]. arXiv preprint arXiv:1702.04267, 2017 |
[108] | LI X , LI F . Adversarial examples detection in deep networks with convolutional filter statistics[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 5764-5772. |
[109] | NGUYEN A , YOSINSKI J , CLUNE J . Deep neural networks are easily fooled:High confidence predictions for unrecognizable images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 427-436. |
[110] | FEINMAN R , CURTIN R R , SHINTRE S ,et al. Detecting adversarial samples from artifacts[J]. arXiv preprint arXiv:1703.00410, 2017 |
[111] | ZHENG Z , HONG P . Robust detection of adversarial attacks by modeling the intrinsic properties of deep neural networks[C]// Advances in Neural Information Processing Systems, 2018: 7913-7922. |
[112] | MENG D , CHEN H . Magnet:a two-pronged defense against adversarial examples[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 135-147. |
[113] | CARLINI N , WAGNER D . Magnet and" efficient defenses against adversarial attacks" are not robust to adversarial examples[J]. arXiv preprint arXiv:1711.08478, 2017 |
[114] | HUANG B , WANG Y , WANG W . Model-agnostic adversarial detection by random perturbations[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4689-4696. |
[115] | LIANG B , LI H , SU M ,et al. Detecting adversarial image examples in deep networks with adaptive noise reduction[J]. arXiv preprint arXiv:1705.08378, 2017 |
[116] | CHENG M , LE T , CHEN P Y ,et al. Query-efficient hard-label black-box attack:An optimization-based approach[J]. arXiv preprint arXiv:1807.04457, 2018 |
[33] | LIU Y , CHEN X , LIU C ,et al. Delving into transferable adversarial examples and black-box attacks[J]. arXiv preprint arXiv:1611.02770, 2016 |
[1] | 王滨, 陈靓, 钱亚冠, 郭艳凯, 邵琦琦, 王佳敏. 面向对抗样本攻击的移动目标防御[J]. 网络与信息安全学报, 2021, 7(1): 113-120. |
[2] | 段广晗,马春光,宋蕾,武朋. 深度学习中对抗样本的构造及防御研究[J]. 网络与信息安全学报, 2020, 6(2): 1-11. |
[3] | 严飞,张铭伦,张立强. 基于边界值不变量的对抗样本检测方法[J]. 网络与信息安全学报, 2020, 6(1): 38-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|