Chinese Journal of Network and Information Security ›› 2020, Vol. 6 ›› Issue (6): 112-120.doi: 10.11959/j.issn.2096-109x.2020084
• Papers • Previous Articles Next Articles
Luhui YANG1(),Huiwen BAI1,Guangjie LIU1,2,Yuewei DAI1,2
Revised:
2020-05-21
Online:
2020-12-15
Published:
2020-12-16
Supported by:
CLC Number:
Luhui YANG,Huiwen BAI,Guangjie LIU,Yuewei DAI. Lightweight malicious domain name detection model based on separable convolution[J]. Chinese Journal of Network and Information Security, 2020, 6(6): 112-120.
层类型 | 输入大小 | 输出大小 | 参数设置 |
输入层(Imput) | 1×128 | 128×128 | |
量化层(Embedding) | 128×128 | 128×128 | |
一维可分离卷积层(SeparableConv1D) | 128×128 | 128×128 | Kernel_size=5,Stride=1 |
随机失活层(Dropout) | 128×128 | 128×128 | Dropout_rate=0.5 |
展开层(Flatten) | 128×128 | 1×16384 | |
全连接层(Dense) | 1×16384 | 1×128 | |
随机失活层(Dropout) | 1×128 | 1×128 | Dropout_rate=0.5 |
全连接层(Dense) | 1×128 | 1×1 | |
激活层(Activation) | 1×1 | 1×1 | Activation= ‘sigmoid’ |
层类型 | 输入大小 | 输出大小 | 参数设置 |
输入层(Imput) | 1×128 | 128×128 | |
量化层(Embedding) | 128×128 | 128×128 | |
一维可分离卷积层(SeparableConv1D) | 128×128 | 128×128 | Kernel_size=5,Stride=1 |
随机失活层(Dropout) | 128×128 | 128×128 | Dropout_rate=0.5 |
展开层(Flatten) | 128×128 | 1×16384 | |
全连接层(Dense) | 1×16384 | 1×128 | |
随机失活层(Dropout) | 1×128 | 1×128 | Dropout_rate=0.5 |
全连接层(Dense) | 1×128 | 1×1 | |
激活层(Activation) | 1×1 | 1×1 | Activation= ‘sigmoid’ |
样本标签 | 样本描述 | 数量/个 |
合法域名 | 样本来自思科收集的DNS请求白名单 | 400 000 |
恶意域名 | 20种恶意软件生成的DGA样本,具体类型如下:Gameover、Murofet、Dircrypt、Tinba、Necurs、Ramdo、Ranbyus、Cryptolocker、Emotet、Corebot、Banjori、Qakbot、Rovnix、Kraken、Ramnit、Locky、Pykspa、Simda、Symmi、Virut | 100 000 |
样本标签 | 样本描述 | 数量/个 |
合法域名 | 样本来自思科收集的DNS请求白名单 | 400 000 |
恶意域名 | 20种恶意软件生成的DGA样本,具体类型如下:Gameover、Murofet、Dircrypt、Tinba、Necurs、Ramdo、Ranbyus、Cryptolocker、Emotet、Corebot、Banjori、Qakbot、Rovnix、Kraken、Ramnit、Locky、Pykspa、Simda、Symmi、Virut | 100 000 |
算法 | 召回率 | 平均准确率 | AUC | CPU推理时间/ms |
文献[ | 94.06% | 96.61% | 0.9968 | 1.05 |
文献[ | 95.36% | 96.97% | 0.9960 | 2.07 |
文献[ | 96.26% | 97.51% | 0.9971 | 2.09 |
本文算法 | 96.75% | 97.46% | 0.9971 | 0.60 |
算法 | 召回率 | 平均准确率 | AUC | CPU推理时间/ms |
文献[ | 94.06% | 96.61% | 0.9968 | 1.05 |
文献[ | 95.36% | 96.97% | 0.9960 | 2.07 |
文献[ | 96.26% | 97.51% | 0.9971 | 2.09 |
本文算法 | 96.75% | 97.46% | 0.9971 | 0.60 |
[1] | YADAV S , REDDY A K K , REDDY A L N ,et al. Detecting algorithmically generated malicious domain names[C]// Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement 2010. 2010: 48-61. |
[2] | YADAV S , REDDY A K K , REDDY A L N ,et al. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis[J]. IEEE/ACM Transactions on Networking, 2012,20(5): 1663-1677. |
[3] | BILGE L , SEN S , BALZAROTTI D ,et al. EXPOSURE:a passive DNS analysis service to detect and report malicious domains[J]. ACM Transactions on Information and System Security (TISSEC), 2014,16(4): 1-28. |
[4] | YANG L , ZHAI J , LIU W ,et al. Detecting word-based algorithmically generated domains using semantic analysis[J]. Symmetry, 2019,11(2):176. |
[5] | SCHIAVONI S , MAGGI F , CAVALLARO L ,et al. Tracking and characterizing botnets using automatically generated domains[J]. Computer Science, 2013(2): 217-248. |
[6] | SCHIAVONI S , MAGGI F , CAVALLARO L ,et al. Phoenix:DGA-based botnet tracking and intelligence[C]// International Conference on Detection of Intrusions and Malware,and Vulnerability Assessment. 2014: 192-211. |
[7] | WOODBRIDGE J , ANDERSON H S , AHUJA A ,et al. Predicting domain generation algorithms with long short-term memory networks[J]. arXiv preprint arXiv:1611.00791, 2016 |
[8] | YU B , GRAY D L , PAN J ,et al. Inline DGA detection with deep networks[C]// 2017 IEEE International Conference on Data Mining Workshops (ICDMW). 2017. |
[9] | YU B , PAN J , HU J ,et al. Character level based detection of DGA domain names[C]// 2018 International Joint Conference on Neural Networks (IJCNN). 2018: 1-8. |
[10] | TRAN D , MAC H , TONG V ,et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection[J]. Neurocomputing, 2018,275: 2401-2413. |
[11] | QIAO Y , ZHANG B , ZHANG W ,et al. DGA domain name classification method based on long short term memory with attention mechanism[J]. Applied Sciences, 20199:4205. |
[12] | LECUN Y , BOSER B , DENKER J S ,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551. |
[13] | KIM Y . Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014 |
[14] | ZHANG X , ZHAO J , LECUN Y . Character-level convolutional networks for text classification[C]// Advances in Neural Information Processing Systems. 2015: 649-657. |
[15] | HOWARD A G , ZHU M , CHEN B ,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017 |
[16] | LIN T Y , GOYAL P , GIRSHICK R ,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,(99): 2999-3007. |
[1] | Ximeng LIU,Lehui XIE,Yaopeng WANG,Xuru LI. Adversarial attacks and defenses in deep learning [J]. Chinese Journal of Network and Information Security, 2020, 6(5): 36-53. |
[2] | Sijia DU,Haining YU,Hongli ZHANG. Survey of text classification methods based on deep learning [J]. Chinese Journal of Network and Information Security, 2020, 6(4): 1-13. |
[3] | Mingfang ZHAI,Xingming ZHANG,Bo ZHAO. Survey of encrypted malicious traffic detection based on deep learning [J]. Chinese Journal of Network and Information Security, 2020, 6(3): 66-77. |
[4] | Guanghan DUAN,Chunguang MA,Lei SONG,Peng WU. Research on structure and defense of adversarial example in deep learning [J]. Chinese Journal of Network and Information Security, 2020, 6(2): 1-11. |
[5] | Yidong WANG, Peishun LIU, Gbin WAN. Research on system log anomaly detection based on deep learning [J]. Chinese Journal of Network and Information Security, 2019, 5(5): 105-118. |
[6] | JIA Chunfu,LI Ruiqi,TIAN Meiqi,CHENG Xiaoyang. Discuss on cultivating mode of information security and law inter-disciplinary talents [J]. Chinese Journal of Network and Information Security, 2019, 5(3): 31-35. |
[7] | CHEN Xingshu,WANG Haizhou,WANG Wenxian,YANG Ping,RUAN Shuhua. Exploring the talent training mode of“cybersecurity doctor” [J]. Chinese Journal of Network and Information Security, 2019, 5(3): 36-43. |
[8] | WENG Jian,WEI Linfeng,ZHANG Yue. Discussion on the cultivation of cyber security talents [J]. Chinese Journal of Network and Information Security, 2019, 5(3): 44-53. |
[9] | CHEN Wei,YIN Zhenqiang,HAN Zhengfu,YU Nenghai. Quantum information course for the undergraduate students of cyber security [J]. Chinese Journal of Network and Information Security, 2019, 5(3): 81-88. |
[10] | Ying YIN,Lixin JI,Ruiyang HUANG,Lixin DU. Research and development of network representation learning [J]. Chinese Journal of Network and Information Security, 2019, 5(2): 77-87. |
[11] | Zhen LI, Deqing ZOU, Zeli WANG, Hai JIN. Survey on static software vulnerability detection for source code [J]. Chinese Journal of Network and Information Security, 2019, 5(1): 1-14. |
[12] | Binghao YAN,Guodong HAN. Combinatorial intrusion detection model based on deep recurrent neural network and improved SMOTE algorithm [J]. Chinese Journal of Network and Information Security, 2018, 4(7): 48-59. |
[13] | Tuosiyu MING, Hongchang CHEN. Research progress and trend of text summarization [J]. Chinese Journal of Network and Information Security, 2018, 4(6): 1-10. |
[14] | Yulong WANG,Kaiyuan LIU. Living body recognition method based on facial feature point motion [J]. Chinese Journal of Network and Information Security, 2018, 4(6): 36-44. |
[15] | Yuchao JIANG,Lixin JI,Chao GAO,Shaomei LI. Research on synthesis data generation method for logo recognition [J]. Chinese Journal of Network and Information Security, 2018, 4(5): 21-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||