电信科学 ›› 2019, Vol. 35 ›› Issue (11): 58-74.doi: 10.11959/j.issn.1000-0801.2019268
苏赋1,吕沁1,罗仁泽2
修回日期:
2019-11-10
出版日期:
2019-11-01
发布日期:
2019-12-23
作者简介:
苏赋(1973- ),女,博士,西南石油大学副教授,主要研究方向为信号与信息处理|吕沁(1995- ),女,西南石油大学硕士生,主要研究方向为深度学习与图像处理|罗仁泽(1973- ),男,博士,西南石油大学教授、博士生导师,主要研究方向为信号处理与人工智能
基金资助:
Fu SU1,Qin LV1,Renze LUO2
Revised:
2019-11-10
Online:
2019-11-01
Published:
2019-12-23
Supported by:
摘要:
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。
中图分类号:
苏赋,吕沁,罗仁泽. 基于深度学习的图像分类研究综述[J]. 电信科学, 2019, 35(11): 58-74.
Fu SU,Qin LV,Renze LUO. Review of image classification based on deep learning[J]. Telecommunications Science, 2019, 35(11): 58-74.
表2
基于CNN图像分类模型的ImageNet数据集错误率对比"
CNN模型 | Top-1错误率(val) | Top-5错误率(val) | Top-5错误率(test) |
AlexNet[ | 36.7% | 15.4% | 15.3% |
VGGNet[ | — | 8.43% | 7.32% |
GoogleNet[ | — | 7.89% | 6.66% |
BN-Inception[ | 21.99% | 5.82% | — |
ResNet-152[ | 19.38% | 4.49% | 3.57% |
Inception-V3[ | 18.77% | 4.2% | — |
DensNet-264[ | 20.80% | 5.29% | — |
Attention-92[ | 19.5% | 4.8% | — |
1.0 MobileNet-224[ | 29.4% | — | — |
SENet-154[ | 18.68% | 4.47% | 2.25% |
[1] |
OUYANG W , ZENG X , WANG X ,et al. DeepID-Net:object detection with deformable part based convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(7): 1320-1334.
doi: 10.1109/TPAMI.2016.2587642 pmid: 27392342 |
[2] | DIBA A , SHARMA V , PAZANDEH A ,et al. Weakly supervised cascaded convolutional networks[C]// IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA. New York:ACM Press, 2017: 5131-5139. |
[3] | HU G , YANG Y X , YI D ,et al. When face recognition meets with deep learning:an evaluation of convolutional neural networks for face recognition[C]// International Conference on Computer Vision,December 11-18,2015,Santiago,Chile. Piscataway:IEEE Press, 2015: 142-150. |
[4] |
LAWRENCE S , GILES C L , TSOI A C ,et al. Face recognition:a convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997,8(1): 98-113.
doi: 10.1109/72.554195 pmid: 18255614 |
[5] | CAO Z , SIMON T , WEI S ,et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA. EprintArxiv, 2017: 1302-1310. |
[6] | TOSHEV A , SZEGEDY C . DeepPose:human pose estimation via deep neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition,June 23-28,2014,Columbus,OH,USA. New York:ACM Press, 2014: 1653-1660. |
[7] |
PERREAULT S , HEBERT P . Median filtering in constant time[J]. IEEE Transactions on Image Processing, 2007,16(9): 2389-2394.
doi: 10.1109/tip.2007.902329 pmid: 17784612 |
[8] |
SLOT K , KOWALSKI J , NAPIERALSKI A ,et al. Analogue median/average image filter based on cellular neural network paradigm[J]. Electronics Letters, 1999,35(19): 1619-1620.
doi: 10.1049/el:19991091 |
[9] | DIREKOGLU C , NIXON M S . Image-based multiscale shape description using Gaussian filter[C]// 2008 Sixth Indian Conference on Computer Vision,Graphics & Image Processing,December 16-19,2008,Bhubaneswar,India. Piscataway:IEEE Press, 2009: 673-678. |
[10] | GRABNER M , GRABNER H , BISCHOF H . Fast approximated SIFT[C]// Asian Conference on Computer Vision,January 13-16,2006,Hyderabad,India. Heidelberg:Springer, 2006: 918-927. |
[11] | HE L , ZOU C , ZHAO L ,et al. An enhanced LBP feature based on facial expression recognition[C]// IEEE Engineering in Medicine and Biology 27th Annual Conference,September 1-4,2005,Shanghai,China. Piscataway:IEEE Press, 2005: 3300-3303. |
[12] |
DENIZ O , BUENO G , SALIDO J ,et al. Face recognition using histograms of oriented gradients[J]. Pattern Recognition Letters, 2011,32(12): 1598-1603.
doi: 10.1016/j.patrec.2011.01.004 |
[13] | LECUN Y , JACKEL L , BOTTOU L ,et al. Comparison of learning algorithms for handwritten digit recognition[C]// International Conference on Artificial Neural Networks,January,1995,Nanterre,France.[S.l.:s.n]. 1995: 53-60. |
[14] |
BEUCHER A , MOLLER A B , GREVE M H . Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark[J]. Geoderma, 2017,320: 30-42.
doi: 10.1016/j.geoderma.2018.01.018 |
[15] |
EBRAHIMI M A , KHOSHTAGHAZ M H , MINAEI S ,et al. Vision-based pest detection based on SVM classification method[J]. Computers and Electronics In Agriculture, 2017,137: 52-58.
doi: 10.3390/s18051489 pmid: 29747429 |
[16] | 周建同, 杨海涛, 刘东 ,等. 视频编码的技术基础及发展方向[J]. 电信科学, 2017,33(8): 16-25. |
ZHOU J T , YANG H T , LIU D ,et al. Trends and technologies of video coding[J]. Telecommunications Science, 2017,33(8): 16-25. | |
[17] |
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504.
doi: 10.1126/science.1123432 pmid: 16873667 |
[18] |
LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324.
doi: 10.1109/5.726791 |
[19] |
XIAO H , RASUL K , VOLLGRAF R . Fashion-MNIST:a novel image dataset for benchmarking machine learning algorithms[J]. Statistics, 2017(2).
doi: 10.1080/02331880902986984 pmid: 21243084 |
[20] |
LI H , LIU H , JI X ,et al. CIFAR10-DVS:an event-stream dataset for object classification[J]. Frontiers in Neuroscience, 2017(11):309.
doi: 10.3389/fnins.2017.00309 pmid: 28611582 |
[21] |
MCCLURE P , KRIEGESKORTE N . Representational distance learning for deep neural networks[J]. Frontiers in Computational Neuroscience, 2016(10):131.
doi: 10.1007/s11548-018-1797-4 pmid: 29850978 |
[22] | DENG J , DONG W , SOCHER R ,et al. ImageNet:a large-scale hierarchical image database[C]// The 2009 IEEE Conference on Computer Vision and Pattern Recognition,June 20-25,2009,Washington,USA. Piscataway:IEEE Press, 2009: 248-255. |
[23] | 郭丽丽, 丁世飞 . 深度学习研究进展[J]. 计算机科学, 2015,42(5): 28-33. |
GUO L L , DING S F . Research progress on deep learning[J]. Computer Science, 2015,42(5): 28-33. | |
[24] |
RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back-propagating errors[J]. Nature, 1986,323(6088): 533-536.
doi: 10.1038/323533a0 |
[25] |
HINTON G E , OSINDERO S , TEH Y . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554.
doi: 10.1162/neco.2006.18.7.1527 pmid: 16764513 |
[26] | SALAKHUTDINOV R , HINTON G . Deep Boltzmann machines[C]// International Conference on Artificial Intelligence and Statistics,April 16-19,2009,Florida,USA.[S.l.:s.n. ], 2009: 448-455. |
[27] | BABRI H A , TONG Y . Deep feedforward networks:application to pattern recognition[C]// International Conference on Neural Networks (ICNN'96),June 3-6,1996,Washington,USA. Piscataway:IEEE Press, 1996: 1422-1426. |
[28] |
ROSENBLATT F . The perceptron:a probabilistic model for information storage and organization in the brainl[J]. Psychological Review, 1958,65(6): 386-408.
doi: 10.1037/h0042519 pmid: 13602029 |
[29] | 赵会敏, 雒江涛, 杨军超 ,等. 集成BP神经网络预测模型的研究与应用[J]. 电信科学, 2016,32(2): 60-67. |
ZHAO H M , LUO J T , YANG J C ,et al. Research and application of prediction model based on ensemble BP neural network[J]. Telecommunications Science, 2016,32(2): 60-67. | |
[30] | 高雪鹏, 丛爽 . BP网络改进算法的性能对比研究[J]. 控制与决策, 2001(2): 167-171. |
GAO X P , CONG S . Comparative study on fast learning algorithms of BP networks[J]. Control and Decision, 2001(2): 167-171. | |
[31] |
OLSHAUSEN B A , FIELD D J . Sparse coding with an overcomplete basis set:A strategy employed by V1?[J]. Vision Research, 1997,37(23): 3311-3325.
doi: 10.1016/s0042-6989(97)00169-7 pmid: 9425546 |
[32] | LIU Y , ZHAO S S , WANG Q Q ,et al. Learning more distinctive representation by enhanced PCA network[J]. Neurocomputing, 2018(275): 924-931. |
[33] | LIU T , LI Z R , YU C X ,et al. NIRS feature extraction based on deep auto-encoder neural network[J]. Infrared Physics & Technology, 2017(87): 124-128. |
[34] |
HASSAIRI S , EJBALI R , ZAIED M . A deep stacked wavelet auto-encoders to supervised feature extraction to pattern classification[J]. Multimedia Tools and applications, 2018,77(5): 5443-5459.
doi: 10.1007/s11042-017-4461-z |
[35] | LIU Y , WU L Z . Geological disaster recognition on optical remote sensing images using deep learning[J]. Procedia Computer Science, 2016(91): 566-575. |
[36] | WANG Y S , YAO H X , ZHAO S C . Auto-encoder based dimensionality reduction[J]. Neuroconmputing, 2016,184(SI): 232-242. |
[37] | VINCENT P , LAROCHELLE H , BENGIO Y ,et al. Extracting and composing robust features with denoising autoencoders[C]// the 25th International Conference on Machine Learning,July 5-9,2008,Helsinki,Finland. New York:ACM Press, 2008: 1096-1103. |
[38] | VINCENT P , LAROCHELLE H , LAJOIE I ,et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010(11): 3371-3408. |
[39] |
PATHIRAGE C S N , LI J , LI L ,et al. Development and application of a deep learning-based sparse autoencoder framework for structural damage identification[J]. Structural Health Monitoring, 2018,18(1): 103-122.
doi: 10.1177/1475921718800363 |
[40] |
LI E Z , DU P J , SAMAT A ,et al. Mid-level feature representation via sparse autoencoder for remotely sensed scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(3): 1068-1081.
doi: 10.1109/JSTARS.2016.2621011 |
[41] | RIFAI S , VINCENT P , MULLER X ,et al. Contractive auto-Encoders:explicit invariance during feature extraction[C]// International Conference on Machine Learning,June28-July 2,2011,Washington,USA.[S.l.:s.n]. 2011: 833-840. |
[42] |
GENG J , FAN J C , WANG H Y ,et al. High-Resolution SAR image classification via deep convolutional autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(11): 2351-2355.
doi: 10.1109/LGRS.8859 |
[43] |
GENG J , WANG H Y , FAN J C ,et al. Deep supervised and contractive neural network for SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(4): 2442-2459.
doi: 10.1109/TGRS.2016.2645226 |
[44] | SMOLENSKY P , . Information processing in dynamical systems:foundations of harmony theory[C]// Parallel Distributed Processing:Explorations in the Microstructure of Cognition,January 1-4,1986,Cambridge,USA. Cambridge:MIT Press, 1986. |
[45] | WELLING M , ROSEN-ZVI M , HINTON G . Exponential family harmoniums with an application to information retrieval[C]// Advances in Neural Information Processing Systems 17,December 13-16,2004,Cambridge USA. Cambridge:MIT Press, 2005: 1481-1488. |
[46] |
HINTON G E . Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002,14(8): 1771-1800.
doi: 10.1162/089976602760128018 pmid: 12180402 |
[47] |
ROUX N L , BENGIO Y . Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008,20(6): 1631-1649.
doi: 10.1162/neco.2008.04-07-510 pmid: 18254699 |
[48] | 徐丽坤, 刘晓东, 向小翠 . 基于深度信念网络的遥感影像识别与分类[J]. 地质科技情报, 2017,36(4): 244-249. |
XU L K , LIU X D , XIANG X C . Recognition and classification for remote sensing image based on depth belief network[J]. Geological Science and Technology Information, 2017,36(4): 244-249. | |
[49] | LIU Q , GAO Z Q , LIU B ,et al. Automated rule selection for opinion target extraction[J]. Knowledge-Based Systems, 2016(104): 74-88. |
[50] |
YOUNES L . On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates[J]. Stochastics and Stochastic Reports, 1999,65(3-4): 177-228.
doi: 10.1080/17442509908834179 |
[51] |
ALJARAH I , FARIS H , MIRJALILI S . Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018,22(1): 1-15.
doi: 10.1007/s00500-016-2442-1 |
[52] |
BENGIO Y , COURVILLE A , VINCENT P . Representation learning:a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(8): 1798-1828.
doi: 10.1109/TPAMI.2013.50 |
[53] | 杨建功, 汪西莉, 刘侍刚 . 融合谱-空域信息的 DBM 高光谱图像分类方法[J]. 西安电子科技大学学报, 2019,46(3): 109-115. |
YANG J G , WANG X L , LIU S G . Spectral-spatial classification of hyperspectral images using deep Boltzmann machines[J]. Journal of Xidian University, 2019,46(3): 109-115. | |
[54] |
SALAKHUTDINOV R , LAROCHELLE H . Efficient learning of deep Boltzmann machines[J]. Journal of Machine Learning Research, 2010(9): 693-700.
doi: 10.1016/j.neunet.2018.10.012 pmid: 30458316 |
[55] | SALAKHUTDINOV R , HINTON G . An efficient learning procedure for deep Boltzmann machines[J]. Neural Computation, 2012,24(8): 1967-2006. |
[56] | SALAKHUTDINOV R , HINTON G . A better way to pretrain deep Boltzmann machines[C]// The 26th Annual Conference on Neural Information Processing Systems,December 3-6,2012,Lake Tahoe,Nevada,USA. Red Hook:Curran Associates Inc, 2012: 2447-2455. |
[57] | CHO K , RAIKO T , ILIN A ,et al. A two-stage pretraining algorithm for deep Boltzmann machines[C]// 23rd International Conference on Artificial Neural Networks,Sep 10-Oct 13,2013,Techn Univ Sofia,Sofia,Bulgaria. Heidelberg:Springer, 2013: 106-113. |
[58] | GOODFELLOW I , MIRZA M , COURVILLE A ,et al. Multi-prediction deep Boltzmann machines[C]// The 26th International Conference on Neural Information Processing Systems,December 5-10,2013,Lake Tahoe,Nevada,USA. Red Hook:Curran Associates Inc, 2013: 548-556. |
[59] |
BOURLARD H , KAMP Y . Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988,59(4): 291-294.
doi: 10.1007/bf00332918 pmid: 3196773 |
[60] | LEE H , GROSSE R , RANGANATH R ,et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]// International Conference on Machine Learning,June 14-18,2009,Montreal,Canada. New York:ACM Press, 2009: 609-616. |
[61] | HUANG G B , LEE H , LEARNED-MILLER E . Learning hierarchical representations for face verification with convolutional deep belief networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition,Jun 16-21,2012,Washington,USA. Piscataway:IEEE Press, 2012: 2518-2525. |
[62] |
耿志强, 张怡康 . 一种基于胶质细胞链的改进深度信念网络模型[J]. 自动化学报, 2016,42(6): 943-952.
doi: 10.16383/j.aas.2016.c150727 |
GENG Z Q , ZHANG Y K . An improved deep belief network inspired by glia chains[J]. Acta Automatica Sinica, 2016,42(6): 943-952.
doi: 10.16383/j.aas.2016.c150727 |
|
[63] | GOODFELLOW I J , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial nets[C]// Annual Conference on Neural Information Processing Systems,December 8-13,2014,Cambridge,USA. Cambridge:MIT Press, 2014: 2672-2680. |
[64] | 唐贤伦, 杜一铭, 刘雨微 ,等. 基于条件深度卷积生成对抗网络的图像识别方法[J]. 自动化学报, 2018,44(5): 855-864. |
TANG X L , DU Y M , LIU Y W ,et al. Image recognition with conditional deep convolutional generative adversarial networks[J]. Acta Automatica Sinica, 2018,44(5): 855-864. | |
[65] |
SHERRINGTON C S . Observations on the scratch-reflex in the spinal dog[J]. The Journal of Physiology, 1906,34(1-2): 1-50.
doi: 10.1113/jphysiol.1906.sp001139 pmid: 16992835 |
[66] |
AKHTAR S W , REHMAN S , AKHTAR M ,et al. Improving the robustness of neural networks using k-support norm based adversarial training[J]. IEEE Access, 2016,4: 9501-9511.
doi: 10.1109/ACCESS.2016.2643678 |
[67] |
COOK J A , RANSTAM J . Overfitting[J]. British Journal of Surgery, 2016,103(13):1814.
doi: 10.1002/bjs.10242 pmid: 27901285 |
[68] | ANTOL S , AGRAWAL A , LU J ,et al. VQA:visual question answering[C]// The 2015 IEEE International Conference on Computer Vision,December 7-13,2015,Santiago,Chile. Piscataway:IEEE Press, 2015: 2425-2433. |
[69] | TUYTELAARS T , MIKOLAJCZYK K . Local invariant feature detectors:a survey[J]. Now Foundations and Trends, 2007,3(3): 177-280. |
[70] | SQUARTINI S , PAOLINELLI S , PIAZZA F . Comparing different recurrent neural architectures on a specific task from vanishing gradient effect perspective[C]// 2006 IEEE International Conference on Networking,Sensing and Control,April 23-25,2006,FL,USA. Piscataway:IEEE Press, 2006: 380-385. |
[71] | PASCANU R , MIKOLOV T , BENGIO Y . Understanding the exploding gradient problem[J]. Arxiv Preprint Arxiv, 2012. |
[72] | HINTON G E , SRIVASTAVA N , KRIZHEVSKY A ,et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012,3(4): 212-223. |
[73] | IOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning,July 6-11,2015,Lile,France.[S.l.:s.n]. 2015: 448-456. |
[74] | KRIZHEVSKY A , SUTSKEVER I , E.HINTON G . ImageNet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems,December 3-6,2012,Lake Tahoe,Nevada. Red Hook:Curran Associates Inc, 2012: 1097-1105. |
[75] | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[C]// International Conference of Learning Representation,May 7-9,2015,San Diego,CA.arXiv:1409.1556v6[cs. CV], 2015. |
[76] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition,June 27-30,2016,Las Vegas,Nevada. Los Alamitos:IEEE Computer Society, 2016: 770-778. |
[77] | HE K M , ZHANG X Y , REN S Q ,et al. Identity mappings in deep residual networks[C]// 14th European Conference on Computer Vision,Octobet 8-16,2016,Amsterdam,Netherlands. Heidelberg:Springer, 2016: 630-645. |
[78] | SZEGEDY C , LIU W , JIA Y Q ,et al. Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition,Juny 7-12,2015,Boston,MA,USA. Piscataway:IEEE Press, 2015: 1-9. |
[79] | SZEGEDY C , VANHOUCKE V , IOFFE S ,et al. Rethinking the inception architecture for computer vision[C]// IEEE Conference on Computer Vision and Pattern Recognition,June 27-30,2016,Seattle,WA,USA. Piscataway:IEEE Press, 2016: 2818-2826. |
[80] | HUANG G , LIU Z , MAATEN L V D ,et al. Densely connected convolutional networks[C]// IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA. Piscataway:IEEE Press, 2017: 2261-2269. |
[81] | IANDOLA F , HAN S , W.MOSKEWICZ M ,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[C]// International Conference on Learning Representations,April 24-26,2017,Toulon,France.arXiv:1602.07360v4[cs.CV]. 2016. |
[82] | HOWARD A G , ZHU M L , CHEN B ,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861v1[cs.CV], 2017. |
[83] | VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[C]// 31st Conference on Neural Information Processing Systems,December 4-9,2017,Long Beach,CA,USA.[S.l.:s.n]. 2017. |
[84] | WANG F , JIANG M Q , QIAN C ,et al. Residual attention network for image classification[C]// IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA. Piscataway:IEEE Press, 2017: 6450-6458. |
[85] | HU J , SHEN L , SUN G . Squeeze-and-excitation networks[C]// IEEE Conference on Computer Vision and Pattern Recognition,June 18-23,2018,New York,USA. Piscataway:IEEE Press, 2018: 7132-7141. |
[86] | SABOUR S , FROSST N , E HINTON G . Dynamic routing between capsules[C]// 31st Conference on Neural Information Processing Systems,December 4-9,2017,Long Beach,CA,USA.arXiv:1710.09829v2[cs.CV]. 2017. |
[1] | 曹靖城, 张继东, 史国杰. 一种使用边缘增强技术提高相似图片检索召回率的方法[J]. 电信科学, 2021, 37(1): 76-84. |
[2] | 张捷, 杨丽花, 王增浩, 呼博, 聂倩. 一种新型的基于深度学习的时变信道预测方法[J]. 电信科学, 2021, 37(1): 39-47. |
[3] | 李远宁,宁柏锋,董召杰. 电网机巡图像分析框架与深度学习方法[J]. 电信科学, 2020, 36(8): 167-174. |
[4] | 张婷婷,章坚武,郭春生,陈华华,周迪,王延松,徐爱华. 基于深度学习的图像目标检测算法综述[J]. 电信科学, 2020, 36(7): 92-106. |
[5] | 郭锐,冉凡春. 基于卷积神经网络的极化码译码算法[J]. 电信科学, 2020, 36(6): 119-124. |
[6] | 汪少敏,王铮,任华. 利用深度学习融合模型提升文本内容安全的研究[J]. 电信科学, 2020, 36(5): 25-30. |
[7] | 盛剑涛,陈茂飞,刘东鑫,汪来富,史国水,金华敏. 基于组合分类器的恶意域名检测技术[J]. 电信科学, 2020, 36(5): 47-55. |
[8] | 张园,王慧芬,王翰铭. 机器视觉技术、标准及安全产业应用[J]. 电信科学, 2020, 36(11): 104-112. |
[9] | 李坤,张静,李潇,金石. 人工智能辅助的信道估计最新研究进展[J]. 电信科学, 2020, 36(10): 46-55. |
[10] | 穆天杰,陈晓辉,汪逸云,马陆鹏,刘东,周晶,张文逸. 基于深度学习的信源信道联合编码方法综述[J]. 电信科学, 2020, 36(10): 56-66. |
[11] | 贾川民,赵政辉,王苫社,马思伟. 基于神经网络的图像视频编码[J]. 电信科学, 2019, 35(5): 32-42. |
[12] | 何明捷,张杰,山世光. 神经结构搜索进展概述[J]. 电信科学, 2019, 35(5): 43-50. |
[13] | 姚慧,马思研. 人工智能在电信实名认证中的关键技术及应用[J]. 电信科学, 2019, 35(5): 51-58. |
[14] | 李丹丹,葛冰玉,黄文雯,谢磊,钱升起. DBN深度学习算法在反窃电系统中的应用[J]. 电信科学, 2019, 35(2): 113-117. |
[15] | 陈铁明, 项彬彬, 吕明琪, 陈波, 江颉. 基于字节码图像和深度学习的Android恶意应用检测[J]. 电信科学, 2019, 35(1): 9-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|