电信科学 ›› 2021, Vol. 37 ›› Issue (3): 133-145.doi: 10.11959/j.issn.1000-0801.2021046

• 研究与开发 • 上一篇    

一种融合MeanShift聚类分析和卷积神经网络的Vibe++背景分割方法

刘子豪1, 贾小军1, 张素兰1, 徐志玲2, 张俊3   

  1. 1 嘉兴学院数理与信息工程学院,浙江 嘉兴 314033
    2 中国计量大学质量与安全工程学院,浙江 杭州 310018
    3 浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
  • 修回日期:2021-02-17 出版日期:2021-03-01 发布日期:2021-03-01
  • 作者简介:刘子豪(1988- ),男,博士,嘉兴学院讲师、硕士生导师,主要研究方向为人工智能与图像处理、基于机器视觉的农产品无损检测。
    贾小军(1974- ),男,博士,嘉兴学院副教授、硕士生导师,主要研究方向为人工智能与图像处理。
    张素兰(1980- ),女,博士,嘉兴学院讲师,主要研究方向为三值光学计算机、系统结构、嵌入式系统。
    徐志玲(1966- ),女,中国计量大学教授,主要研究方向为计量检测成像技术研究与仪器开发、工业机器人检测系统研究与开发。
    张俊(1994- ),男,浙江大学生物系统工程与食品科学学院博士生,主要研究方向为基于谱图成像技术的农产品无损检测。
  • 基金资助:
    浙江省基础公益研究计划项目(LGG21F030013);浙江省基础公益研究计划项目(LGG20F010010);浙江省基础公益研究计划项目(LGG20F030006);嘉兴市公益计划项目(2020AY10009);嘉兴市公益计划项目(2018AY11008);嘉兴学院科研启动基金(CD70519085)

Vibe++ background segmentation method combining MeanShift clustering analysis and convolutional neural network

Zihao LIU1, Xiaojun JIA1, Sulan ZHANG1, Zhiling XU2, Jun ZHANG3   

  1. 1 College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314033, China
    2 College of Quality &Safty Engineering, China Jiliang University, Hangzhou 310018, China
    3 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
  • Revised:2021-02-17 Online:2021-03-01 Published:2021-03-01
  • Supported by:
    Zhejiang Public Welfare Technology Research Project(LGG21F030013);Zhejiang Public Welfare Technology Research Project(LGG20F010010);Zhejiang Public Welfare Technology Research Project(LGG20F030006);Jiaxing City Public Welfare Technology Application Research Project of Jiaxing Science and Technology Bureau(2020AY10009);Jiaxing City Public Welfare Technology Application Research Project of Jiaxing Science and Technology Bureau(2018AY11008);Scientific Research Foundation of Jiaxing University(CD70519085)

摘要:

针对传统 Vibe+算法存在噪点和拖影分割错误率较高的问题,提出了一种改进的 Vibe+运动目标分割算法(Vibe++)。首先,通过对视频帧采用传统Vibe+算法处理获取二值图像,基于区域生长算法对结果图中各连通域标记,依据边界面积块差异获取面积筛选阈值,将低于阈值的连通区域视为噪点并删除;然后,引入 5 种不同核函数优化传统 MeanShift 聚类算法,并与卷积神经网络(CNN)进行顺序组合;最后,采用组合模型对已消除噪点图像中的拖影区、非拖影区和拖影边缘区分类,计算拖影区中每个像素点的坐标,定位拖影区并快速删除,获取分割结果。所提算法用于公开数据集的实验结果表明,其可取得 98%以上的分割准确率,具有较好的应用效果和较高的实用价值。

关键词: 背景分割, 聚类分析, 分割准确率, 卷积神经网络

Abstract:

To solve problems of noise points and high segmentation error for image shadow brought by traditional Vibe+ algorithm, a novel background segmentation method (Vibe++) based on the improved Vibe+ was proposed.Firstly, binarization image was acquired by using traditional Vibe+ algorithm from surveillance video.The connected regions were marked based on the region-growing domain marker method.The area threshold was obtained with difference characteristics of boundary area, the connected regions below threshold were treated as disturbing points.Secondly, five different kernel functions were introduced to improve the traditional MeanShift clustering algorithm.After improving, this algorithm was fused effectively with partitioned convolutional neural network.Finally, program of classification of trailing area, non-trailing area and trailing edge area in the resulting image was performed.Position coordinates of the trailing area were calculated and confirmed, and the trailing area was quickly deleted to obtain the final segmentation result.This segmentation accuracy was greatly improved by using the proposed method.The experimental results show that the proposed algorithm can achieve segmentation accuracy of more than 98% and has good application effect and high practical value.

Key words: background segmentation, clustering analysis, segmentation accuracy, convolutional neural network

中图分类号: 

No Suggested Reading articles found!