通信学报 ›› 2019, Vol. 40 ›› Issue (6): 160-176.doi: 10.11959/j.issn.1000-436x.2019119
黄韬,汪硕,黄玉栋,郑尧,刘江,刘韵洁
修回日期:
2019-02-10
出版日期:
2019-06-25
发布日期:
2019-07-04
作者简介:
黄韬(1980– ),男,重庆人,博士,北京邮电大学教授,主要研究方向为路由与交换、软件定义网络、内容分发网络等。|汪硕(1991– ),男,河南灵宝人,博士,北京邮电大学在站博士后,主要研究方向为数据中心网络、软件定义网络、网络流量调度等。|黄玉栋(1998–),男,重庆人,北京邮电大学硕士生,主要研究方向为未来网络体系架构、确定性网络、软件定义网络等。|郑尧(1998–),女,吉林四平人,北京邮电大学硕士生,主要研究方向为未来网络体系架构、确定性网络、软件定义网络等。|刘江(1983–),男,河南郑州人,博士,北京邮电大学副教授,主要研究方向为网络体系架构、网络虚拟化、软件定义网络、信息中心网络等。|刘韵洁(1943–),男,山东烟台人,中国工程院院士,主要研究方向为未来网络体系架构、网络融合与演进等。
基金资助:
HUANG Tao,WANG Shuo,HUANG Yudong,ZHENG Yao,LIU Jiang,LIU Yunjie
Revised:
2019-02-10
Online:
2019-06-25
Published:
2019-07-04
Supported by:
摘要:
现有的互联网面对激增的视频流量和工业机器应用,存在着大量的拥塞崩溃、数据分组时延等问题,而许多网络应用,例如工业互联网、远程医疗、无人驾驶、VR游戏等,需要达到1~10 ms时延,微秒级抖动但传统的网络只能将端到端的时延减少到几十毫秒。在这样的背景下,对网络端到端时延的控制如何从“尽力而为”到“准时、准确”,成为当前全球关注的热点领域。通过介绍确定性网络的应用场景与需求,描述当前该领域的主要研究成果,总结分析了该领域的研究发展趋势和核心问题,期望对该领域的研究起到参考和帮助作用。
中图分类号:
黄韬,汪硕,黄玉栋,郑尧,刘江,刘韵洁. 确定性网络研究综述[J]. 通信学报, 2019, 40(6): 160-176.
HUANG Tao,WANG Shuo,HUANG Yudong,ZHENG Yao,LIU Jiang,LIU Yunjie. Survey of the deterministic network[J]. Journal on Communications, 2019, 40(6): 160-176.
[1] | Cisco.Cisco visual networking index global mobile data traffic forecast update,2015-2020[R]. Cisco Systems, 2015. |
[2] | ANDRE L , GUILHERME S , AFONSO C . Panorama,challenges and opportunities in PROFINET protocol research[C]// The 13th International Conference on Industry Applications. IEEE, 2018: 186-193. |
[3] | MARTIN R , JOSEPH E , DMITRY D . EtherCAT enabled advanced control architecture[C]// 2010 Advanced Semiconductor Manufacturing Conference. IEEE/SEMI, 2010: 39-44. |
[4] | VINH Q , JAE W . EtherCAT network latency analysis[C]// 2016 International Conference on Computing,Communication and Automation. 2016: 432-436. |
[5] | ZHAO L , HE F , LI E . Comparison of time sensitive network(TSN) and TTEthernet[C]// The 37th Digital Avionics Systems Conference. IEEE/AIAA, 2018: 1-7. |
[6] | SOUSA R , PEDREIRAS P , GON?ALVES P . Enabling IIoT IP backbones with real-time guarantees[C]// The 20th Conference on Emerging Technologies & Factory Automation. IEEE, 2015: 1-6. |
[7] | AII.White paper on industrial Internet network connection[R]. Alliance of Industrial Internet, 2018. |
[8] | KARAAGAC A , HAXHIBEQIRI J , MOERMAN I . Time-critical communication in 6TiSCH networks[C]// IEEE Wireless Communications and Networking Conference Workshops. IEEE, 2018: 161-166. |
[9] | DUJOVNE D , WATTEYNE T , VILAJOSANA X . 6TiSCH:deterministic IP-enabled industrial Internet (of things)[J]. IEEE Communications Magazine, 2014,52(12): 36-41. |
[10] | PAVENTHAN A , DARSHINI D , KRISHNA B H ,et al. Experimental evaluation of IETF 6TiSCH in the context of smart grid[C]// The 2nd World Forum on Internet of Things. IEEE, 2016: 530-535. |
[11] | DRAHO? P , KUTERA E , HAFFNER O . Trends in industrial communication and OPC UA[C]// 2018 Cybernetics & Informatics. IEEE, 2018: 1-5. |
[12] | YANG C , LI H , LIU Z . Implementation of migrations from class OPC to OPC UA for data acquisition system[C]// 2012 International Conference on System Science and Engineering, 2012: 588-592. |
[13] | SCHWARZ M , BORCSOK J . A survey on OPC and OPC-UA:about the standard,developments and investigations[C]// 2013 XXIV International Conference on Information,Communication and Automation Technologies. IEEE, 2013: 1-6. |
[14] | ECKHARDT A , MULLER S , LEURS L . An evaluation of the applicability of OPC UA publish subscribe on factory automation use cases[C]// The 23rd International Conference on Emerging Technologies and Factory Automation. IEEE, 2018: 1071-1074. |
[15] | NASRALLAH A , AKHILESH S , ZIYAD T . Ultra-low latency (ULL) networks:the IEEE TSN and IETF DetNet standards and related 5G ULL research[J]. IEEE Communications Surveys & Tutorials, 2019,21(1): 88-145. |
[16] | ZANZI L , SCIANCALEPORE V . On guaranteeing end-to-end network slice latency constraints in 5G networks[C]// 15th International Symposium on Wireless Communication Systems. IEEE, 2018: 1-6. |
[17] | GROSSMAN E . Deterministic networking use cases draft-IETFdetnet- use-cases-18[S]. IETF, 2018. |
[18] | LIM H , HERRSCHER D , WALTL M J ,et al. Performance analysis of the IEEE 802.1 ethernet audio/video bridging standard[C]// The 5th International ICST Conference on Simulation Tools and Techniques. ICST, 2012. |
[19] | ZHAO L , POP P , ZHENG Z . Time analysis of AVB traffic in TSN networks using network calculus[C]// 2018 Real-Time and Embedded Technology and Applications Symposium. IEEE, 2018: 25-36. |
[20] | VERDUZCO H , CUIJPERS P , CAO J . Work-in-progress:best-case response time analysis for ethernet AVB[C]// Real-Time Systems Symposium. IEEE, 2017: 378-380. |
[21] | Huawei.Guangdong research institute of China telecom:white paper on flexible ethernet technology(2018)[R]. Shenzhen:Huawei, 2018. |
[22] | EVELEENS J , . Ethernet AVB overview and status[C]// SMPTE Technical Conference Exhibition. IEEE, 2014: 1-11. |
[23] | TEENER M , FREDETTE A , BOIGER C . Heterogeneous networks for audio and video:using IEEE 802.1 audio video bridging[J]. Proceedings of the IEEE, 2013,101(11): 2339-2354. |
[24] | WG802.1.IEEE standard for local and metropolitan area networks–bridges and bridged networks:IEEE Std 802.1Q-2014[S]. IEEE, 2014. |
[25] | FARKAS J , BELLO L , GUNTHER C . Time-sensitive networking standards[J]. IEEE Communications Standards Magazine, 2018,2(2): 20-21. |
[26] | WG802.1.IEEE standard for local and metropolitan area networks timing and synchronization for time-sensitive applications in bridged local area networks:IEEE Std 802.1AS-2011[S]. IEEE, 2011. |
[27] | STANTON K , . Distributing deterministic,accurate time for tightly coordinated network and software applications:IEEE 802.1AS,the TSN profile of PTP[J]. IEEE Communications Standards Magazine, 2018,2(2): 34-40. |
[28] | WG802.1.IEEE standard for a precision clock synchronization protocol for networked measurement and control systems:IEEE Std 1588-2008[S]. IEEE, 2008. |
[29] | AIJAZ A , SIMSEK M , DOHLER M . Shaping 5G for the tactile internet[M]. Switzerland: Springer International PublishingPress, 2017: 677-691. |
[30] | BJORKLUND M . YANG - a data modeling language for the network configuration protocol (NETCONF)[S]. The Internet Engineering Task Force, 2010. |
[31] | BIERMAN A . Guidelines for authors and reviewers of YANG data model documents[S]. The Internet Engineering Task Force, 2011. |
[32] | HOLNESS M. . IEEE draft standard for local and metropolitan area networks–media access control (MAC)bridges and virtual bridged local area networks amendment:YANG data model:IEEE P802.1Qcp/D0.7[S]. IEEE, 2016. |
[33] | WG802.1.IEEE standard for local and metropolitan area networks—virtual bridged local area networks amendment 14:stream reservation protocol (SRP):IEEE Std 802.1Qat-2010[S]. IEEE, 2010. |
[34] | WG802.1.IEEE draft standard for local and metropolitan area networks– media access control (MAC)bridges and virtual bridged local area networks amendment:stream reservation protocol(SRP) Enhancements and Performance Improvements:IEEE P802.1Qcc/D2.0[S]. IEEE, 2017. |
[35] | FINN N . IEEE draft standard for local and metropolitan area networks–media access control (MAC) bridges and virtual bridged local area networks amendment:link-local registration protocol:IEEE P802.1CS/D1.2[S]. IEEE, 2017. |
[36] | WG802.1.IEEE draft standard for local and metropolitan area networks–media access control (MAC)bridges and virtual bridged local area networks amendment:stream reservation protocol(SRP) enhancements and performance improvements:IEEE P802.1Qcc/D2.0[S]. IEEE, 2017. |
[37] | ENNS R , BJORKLUND M , BIERMAN A . Network configuration protocol (NETCONF)[S]. The Internet Engineering Task Force, 2011. |
[38] | BIERMAN A , BJORKLUND M , WATSEN K . RESTCONF protocol[S]. The Internet Engineering Task Force, 2017. |
[39] | WG802.1.IEEE standard for local and metropolitan area networks–bridges and bridged networks:IEEE Std 802.1Q-2014[S]. IEEE, 2014. |
[40] | WG802.1.IEEE standard for local and metropolitan area networks –bridges and bridged networks - amendment 25:enhancements for scheduled traffic:IEEE Std 802.1Qbv-2015[S]. IEEE, 2016. |
[41] | WG802.1.IEEE standard for local and metropolitan area networks virtual bridged local area networks amendment 12 forwarding and queuing enhancements for time-sensitive streams:IEEE Std 802.1Qav-2009[S]. IEEE, 2009. |
[42] | WG802.1.IEEE standard for local and metropolitan area networks –bridges and bridged networks – amendment 26:frame preemption:IEEE Std 802.1Qbu-2016[S]. IEEE, 2016. |
[43] | SPECHT J , SAMII S . Urgency-based scheduler for time-sensitive switched ethernet networks[C]// Euromicro Conference on Real-Time Systems. IEEE, 2016: 75-85. |
[44] | SPECHT J , SAMII S . Synthesis of queue and priority assignment for asynchronous traffic shaping in switched ethernet[C]// IEEE Real-Time Systems Symposium. 2017: 178-187. |
[45] | WG802.1.IEEE standard for local and metropolitan area networks–bridges and bridged networks - amendment 24:path control and reservation:IEEE Std 802.1Qca-2015[S]. IEEE, 2016. |
[46] | CHEN Y , ZHANG H , FISHER N . Probabilistic per-packet real-time guarantees for wireless networked sensing and control[J]. IEEE Transactions on Industrial Informatics, 2018,14(5): 2133-2145. |
[47] | FINN N , THUBERT P , VARGA B . Deterministic networking architecture[R].[2019-04-25]. |
[48] | LEE Y , CECCARELLI D , MIYASAKA T . Requirements for abstraction and control of TE networks[R]. The Internet Engineering Task Force, 2018. |
[49] | GENG X , CHEN M . DetNet configuration YANG model[R]. The Internet Engineering Task Force, 2017. |
[50] | KORHONEN J , ANDERSSON L , JIANG Y . DetNet data plane encapsulation[R]. The Internet Engineering Task Force, 2017. |
[51] | PATE P , BRYANT S . Pseudo wire emulation edge-to-edge(PWE3)architecture[R]. The Internet Engineering Task Force, 2005. |
[52] | ALVIZU R , MAIER G , KUKREJA N . Comprehensive survey on T-SDN:software defined networking for transport networks[J]. IEEE Communications Surveys & Tutorials, 2017,19(4): 2232-2283. |
[53] | NUNES B , MENDONCA M , NGUYEN N . A survey of software-defined networking:past,present,and future of programmable networks[J]. IEEE Communications Surveys & Tutorials, 2014,16(3): 1617-1634. |
[1] | 黄韬, 刘江, 汪硕, 张晨, 刘韵洁. 未来网络技术与发展趋势综述[J]. 通信学报, 2021, 42(1): 130-150. |
[2] | 孙国林,欧睿杰,刘贵松. 基于深度强化学习的应急物联网切片资源预留算法[J]. 通信学报, 2020, 41(9): 8-20. |
[3] | 伏玉笋,杨根科. 无线超可靠低时延通信:关键设计分析与挑战[J]. 通信学报, 2020, 41(8): 187-203. |
[4] | 卢毅,徐梦颖,周杰. 基于改进的免疫克隆蛙跳算法的多约束QoS路由优化研究[J]. 通信学报, 2020, 41(5): 141-149. |
[5] | 邱雪松,黄徐川,李文萃,李温静,郭少勇. 面向大规模时间敏感网络的分组调度机制[J]. 通信学报, 2020, 41(11): 124-131. |
[6] | 李罡,吴志军. 基于多QoS约束条件的广域信息管理系统任务调度算法[J]. 通信学报, 2019, 40(7): 27-37. |
[7] | 苏命峰,王国军,李仁发. 基于利益相关视角的多维QoS云资源调度方法[J]. 通信学报, 2019, 40(6): 102-115. |
[8] | 邵雯娟,沈庆国. 软件定义的D2D和V2X通信研究综述[J]. 通信学报, 2019, 40(4): 179-194. |
[9] | 兰巨龙,张学帅,胡宇翔,孙鹏浩. 基于深度强化学习的软件定义网络QoS优化[J]. 通信学报, 2019, 40(12): 60-67. |
[10] | 任语铮,谢人超,曾诗钦,赵浩然,喻嘉义,霍如,黄韬,刘韵洁. 工业互联网标识解析体系综述[J]. 通信学报, 2019, 40(11): 138-155. |
[11] | 陈亮,王军,陈蓉,顾翔,王进,万杰. 车载自组织网视频流媒体协助下载研究[J]. 通信学报, 2019, 40(1): 51-63. |
[12] | 夏玮玮,丁兆明,沈连丰. 异构网络中基于负载传递的联合接纳控制算法[J]. 通信学报, 2018, 39(5): 34-47. |
[13] | 裴卓雄,李兴华,刘海,雷凯跃,马建峰,李晖. LBS隐私保护中基于查询范围的匿名区构造方案[J]. 通信学报, 2017, 38(9): 125-132. |
[14] | 赵志远,孟相如,苏玉泽,李振涛. 多控制器条件下区分QoS的虚拟SDN映射方法[J]. 通信学报, 2017, 38(8): 101-110. |
[15] | 孙志,陈鸣. PriQoS:基于SDN的区分优先权流控机制[J]. 通信学报, 2017, 38(2): 115-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|