通信学报 ›› 2021, Vol. 42 ›› Issue (1): 130-150.doi: 10.11959/j.issn.1000-436x.2021006
黄韬1,2, 刘江1,2, 汪硕1,2, 张晨2, 刘韵洁1,2
修回日期:
2020-08-18
出版日期:
2021-01-25
发布日期:
2021-01-01
作者简介:
黄韬(1980- ),男,重庆人,博士,北京邮电大学教授,主要研究方向为路由与交换、软件定义网络、网络试验设施等。基金资助:
Tao HUANG1,2, Jiang LIU1,2, Shuo WANG1,2, Chen ZHANG2, Yunjie LIU1,2
Revised:
2020-08-18
Online:
2021-01-25
Published:
2021-01-01
Supported by:
摘要:
对面向 2030 的未来网络领域的发展趋势进行了综述。首先,介绍了网络体系架构和试验设施领域的研究进展;其次,从网络控制与编排、网络深度可编程、网络确定性服务、网络计算存储一体化、网络与人工智能、网络与区块链、智能安全网络、网络空天地海一体化8个方面阐述了当前热点网络技术的背景、进展和主要成果;最后,分析了面向2030的未来网络发展趋势,预计到2030年未来网络将支撑万亿级、人机物、全时空、安全、智能的连接与服务。希望能为未来网络相关领域的研究提供参考和帮助。
中图分类号:
黄韬, 刘江, 汪硕, 张晨, 刘韵洁. 未来网络技术与发展趋势综述[J]. 通信学报, 2021, 42(1): 130-150.
Tao HUANG, Jiang LIU, Shuo WANG, Chen ZHANG, Yunjie LIU. Survey of the future network technology and trend[J]. Journal on Communications, 2021, 42(1): 130-150.
表1
试验平台对比"
试验平台 | 平台主旨 | 支持功能 |
GENI[ | 创建分布式试验平台支持计算机科学试验并促进试验设计、执行和记录的良好规范 | OpenFlow技术,按需申请网络资源 |
CloudLab[ | 提供支持各种云计算研究的大规模、多样化、分布式试验平台 | 提供云计算资源,构建上层云应用,裸机控制和可视性 |
Chameleon[ | 大型、可深度重配置的计算机科学试验平台 | 软件堆栈的完全控制,系统裸机重配置 |
OneLab | 将试验平台扩展至整个欧洲并与全球其他 PlanetLab 基础设施联合,构建开放、可持续的大规模共享试验设施 | 单一入口访问异构资源和分布式资源,联合多个权限控制下资源的联合模型 |
Fed4FIRE+ | 构建全球最大的下一代互联网联合试验平台 | 对云计算、大数据分析、媒体分发网络、智能城市、5G和物联网领域相关研究的支持 |
RISE[ | 提供大规模、真实的SDN验证环境 | 为大规模网络及物联网相关技术试验提供支持 |
CENI | 提供一个大规模虚拟化网络环境,为新型网络服务部署、新设备的大规模测试、新型网络业务提供测试平台和应用基础环境 | 满足关于下一代互联网、网络空间安全、天地一体化网络等的试验验证需求 |
表2
热点技术领域总结"
技术领域 | 面临问题 | 创新技术 | 技术展望 |
网络控制与编排 | 传统分布式网络操作复杂、管控困难 | 控制器架构、控制平面性能、控制平面接口、业务编排和虚拟网元编排 | 开放灵活、面向业务,实现异构云网边端资源的控制、编排、调度的网络操作系统 |
网络深度可编程 | 传统设备标准不兼容、硬件功能固定 | 编程语言、可编程芯片、智能网络接口卡 | 形成一个可验证的闭环控制管理网络 |
网络确定性服务 | 传统以太网机理上欠缺服务质量保障能力 | FlexE、TSN、DetNet | 实端到端的控制、资源管理以及安全性策略的网络 |
网络计算存储一体化 | 传统模式不具备高速缓存和计算能力 | 内容分发网络、信息中心网络、云计算、雾计算、边缘计算 | 构建可扩展部署的网络、存储和计算互操作融合的分布式系统 |
网络与人工智能 | 网络复杂性增加 | 监控、建模、整体控制、数据收集、流量预测、网络切片、拥塞控制 | 网络自我驱动为主的自治模式网络 |
网络与区块链 | 当前中心化应用权力过大 | 解决身份认证、标识解析、路由等层面的安全可信问题 | 形成多中心化、甚至于去中心化的云网基础设施 |
智能安全网络 | 传统网络和安全孤立,缺乏一体化设计 | 信息保护、入侵检测和故障恢复 | 端到端安全传输、认证及管理、入侵检测、网络故障精准定位和快速恢复的系统 |
网络空天地海一体化 | 网络容量和覆盖范围的限制 | 组网架构设计、空间网络协议族、移动性切换机制、资源协同管理 | 提供高效、经济、实时服务的网络空天地海一体化网络体系 |
表3
未来网络的发展方向总结"
发展方向 | 现有成果 | 首要问题 |
新型网络体系架构 | 研发Flexible IP、确定性转发、去中心化互联网基础设施、内生安全等新技术;建设网络试验环境 | 合理的预判未来应用的发展、评估网络重大需要、设计未来新型网络架构 |
确定性网络控制与服务 | 研发可编程网络芯片、制定确定性技术国际标准、开展确定性网络技术的大规模测试 | 设计局域网时延敏感芯片、设计主干网确定性网络架构 |
去中心化网络应用 | 信通院等单位进行新型标识解析体系的研究与技术攻关 | 设计去中心化的新型标识解析体系、BGP 和网络 |
存储 | ||
空天地海一体化泛在互联 | 进行空天互联网的系统设计与研制;进行浮空飞艇的研究,以实现低成本区域性网络覆盖 | 满足未来的泛在互联接入需求,利用卫星、飞艇、6G等多种方式实现网络的低成本全球覆盖 |
智能化网络与通信 | 早期或试点阶段,但迄今为止几乎没有大规模的部署 | 人工智能与网络相结合,实现网络智能化 |
[1] | CROWCROFT J , HAND S , MORTIER R ,et al. Plutarch:an argument for network pluralism[J]. ACM SIGCOMM Computer Communication Review, 2003,33(4): 258-266. |
[2] | NAYLOR D , MUKERJEE M K , AGYAPONG P ,et al. XIA:architecting a more trustworthy and evolvable Internet[J]. ACM SIGCOMM Computer Communication Review, 2014,44(3): 50-57. |
[3] | ZAVE P , REXFORD J . The compositional architecture of the Internet[J]. Communications of the ACM, 2019,62(3): 78-87. |
[4] | MCCAULEY J , HARCHOL Y , PANDA A ,et al. Enabling a permanent revolution in Internet architecture[C]// Proceedings of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2019: 1-14. |
[5] | YANG M , LI Y , JIN D ,et al. Software-defined and virtualized future mobile and wireless networks:a survey[J]. Mobile Networks and Applications, 2015,20(1): 4-18. |
[6] | 吴建平, 李丹, 毕军 ,等. ADN:地址驱动的网络体系结构[J]. 计算机学报, 2015,38(6): 1-12. |
WU J P , LI D , BI J ,et al. ADN:address driven Internet architecture[J]. Chinese Journal of Computers, 2015,38(6): 1-12. | |
[7] | 张宏科, 黄道超 . 智慧标识网络的未来互联网体系[J]. 电信科学, 2013(S1): 20-28. |
ZHANG H K , HUANG D C . Architecture of future Internet based on smart identifier-based network[J]. Telecommunications Science, 2013(S1): 20-28. | |
[8] | 胡宇翔, 伊鹏, 孙鹏浩 ,等. 全维可定义的多模态智慧网络体系研究[J]. 通信学报, 2019,40(8): 1-12. |
HU Y X , YI P , SUN P H ,et al. Research on the full-dimensional defined polymorphic smart network[J]. Journal on Communications, 2019,40(8): 1-12. | |
[9] | 杨鹏, 李幼平 . 支持内容智能治理的双结构互联网[J]. 通信学报, 2019,40(9): 1-14. |
YANG P , LI Y P . Dual-architecture Internet supporting intelligent governance of cyber content[J]. Journal on Communications, 2019,40(9): 1-14. | |
[10] | 刘韵洁, 张娇, 黄韬 ,等. 面向服务定制的未来网络架构[J]. 重庆邮电大学学报:自然科学版, 2018,30(1): 1-8. |
LIU Y J , ZHANG J , HUANG T ,et al. Service customized future network architecture[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2018,30(1): 1-8. | |
[11] | BERMAN M , CHASE J S , LANDWEBER L ,et al. GENI:a federated testbed for innovative network experiments[J]. Computer Networks, 2014,61: 5-23. |
[12] | MCGEER R , BERMAN M , ELLIOTT C . The GENI book[M]. Berlin: Springer, 2016. |
[13] | HUANG T , YU F R , ZHANG C ,et al. A survey on large-scale software defined networking (SDN) testbeds:approaches and challenges[J]. IEEE Communications Surveys & Tutorials, 2016,19(2): 891-917. |
[14] | RICCI R , EIDE E , TEAM C L . Introducing CloudLab:scientific infrastructure for advancing cloud architectures and applications[J]. the magazine of USENIX & SAGE, 2014,39(6): 36-38. |
[15] | DUPLYAKIN D , RICCI R , MARICQ A ,et al. The design and operation of CloudLab[C]// 2019 USENIX Annual Technical Conference. Berkeley:USENIX Association, 2019: 1-14. |
[16] | KEAHEY K , MAMBRETTI J , RUTH P ,et al. Chameleon:a large-scale,deeply reconfigurable testbed for computer science research[C]// 2019 IEEE 27th International Conference on Network Protocols. Piscataway:IEEE Press, 2019: 1-2. |
[17] | BARON L , KLACZA R , RAHMAN M Y ,et al. OneLab:on-demand deployment of IoT over IPv6[C]// International Conference on Computer Communications. Piscataway:IEEE Press, 2016: 1-3. |
[18] | KANAUMI Y , SAITO S , KAWAI E ,et al. RISE:a wide-area hybrid OpenFlow network testbed[J]. IEICE Transactions on Communications, 2013,96(1): 108-118. |
[19] | KANAUMI Y , SAITO S , KAWAI E ,et al. Deployment and operation of wide-area hybrid OpenFlow networks[C]// 2012 IEEE Network Operations and Management Symposium. Piscataway:IEEE Press, 2012: 1135-1142. |
[20] | MIYACHI T , CHINEN K , SHINODA Y . StarBED and SpringOS:large-scale general purpose network testbed and supporting software[C]// Proceedings of the 1st International Conference on Performance Evaluation Methodolgies and Tools. New York:ACM Press, 2006:30. |
[21] | TERANISHI Y , SAITO Y , MURONO S ,et al. JOSE:an open testbed for field trials of large-scale IoT services[J]. Journal of the National Institute of Information and Communications Technology, 2015,62(2): 151-159. |
[22] | LINGUAGLOSSA L , LANGE S , PONTARELLI S ,et al. Survey of performance acceleration techniques for network function virtualization[J]. Proceedings of the IEEE, 2019,107(4): 746-764. |
[23] | ZHAO Y , LI Y , ZHANG X ,et al. A survey of networking applications applying the software defined networking concept based on machine learning[J]. IEEE Access, 2019,7: 95397-95417. |
[24] | MUHAMMAD S , SEAN C , BEN P ,et al. PISCES:a programmable,protocol-independent software switch[C]// Proceedings of the 2016 ACM SIGCOMM Conference. New York:ACM Press, 2016: 525-538. |
[25] | WANG H , LEE K.S , SHRIVASTAV V ,et al. P4FPGA:high level synthesis for networking[C]// Proceedings of the 2017 Conference of the ACM Special Interest Group on Data Communicaiton. New York:ACM Press, 2017: 122-135. |
[26] | WANG H , ROBERT S , DANG H T ,et al. P4FPGA:a rapid prototyping framework for P4[C]// Symposium on SDN Research. New York:ACM Press, 2017: 122-135. |
[27] | JACOBSON V , SMETTERS D K , THORNTON J D ,et al. Networking named content[C]// Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies. New York:ACM Press, 2009: 1-12. |
[28] | ZHANG M , LUO H , ZHANG H . A survey of caching mechanisms in information-centric networking[J]. IEEE Communications Surveys &Tutorials, 2015,17(3): 1473-1499. |
[29] | ZHANG L , AFANASYEV A , BURKE J ,et al. Named data networking[J]. ACM SIGCOMM Computer Communication Review, 2014,44(3): 66-73. |
[30] | HU Y C , PATEL M , SABELLA D ,et al. Mobile edge computing—a key technology towards 5G[J]. ETSI White Paper, 2015,11(11): 1-16. |
[31] | HUO R , YU F R , HUANG T ,et al. Software defined networking,caching,and computing for green wireless networks[J]. IEEE Communications Magazine, 2016,54(11): 185-193. |
[32] | BECK M , MOORE T , LUSZCZEK P ,et al. Interoperable Convergence of Storage,Networking,and Computation[C]// Future of Information and Communication Conference. Berlin:Springer, 2019: 667-690. |
[33] | ZHOU Y , TIAN L , LIU L ,et al. Fog computing enabled future mobile communication networks:a convergence of communication and computing[J]. IEEE Communications Magazine, 2019,57(5): 20-27. |
[34] | WANG S , ZHANG X , ZHANG Y ,et al. A survey on mobile edge networks:convergence of computing,caching and communications[J]. IEEE Access, 2017,5: 6757-6779. |
[35] | BOUTABA R , SALAHUDDIN M A , LIMAM N ,et al. A comprehensive survey on machine learning for networking:evolution,applications and research opportunities[J]. Journal of Internet Services and Applications, 2018,9(1): 16. |
[36] | WANG S , TUOR T , SALONIDIS T ,et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1205-1221. |
[37] | USMAN M , JAN M A , HE X ,et al. P2DCA:a privacy-preserving-based data collection and analysis framework for IoMT applications[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1222-1230. |
[38] | MARCHAL S , MIETTINEN M , NGUYEN T D ,et al. AuDI:toward autonomous IoT device-type identification using periodic communication[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1402-1412. |
[39] | XIAO F , CHEN L , ZHU H ,et al. Anomaly-tolerant network traffic estimation via noise-immune temporal matrix completion model[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1192-1204. |
[40] | ZHANG C , ZHANG H , QIAO J ,et al. Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1389-1401. |
[41] | FANG L , CHENG X , WANG H ,et al. Idle time window prediction in cellular networks with deep spatiotemporal modeling[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1441-1454. |
[42] | XIE J , YU F R , HUANG T ,et al. A survey of machine learning techniques applied to software defined networking (SDN):research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2018,21(1): 393-430. |
[43] | FADLULLAH Z M , TANG F , MAO B ,et al. State-of-the-art deep learning:Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems[J]. IEEE Communications Surveys &Tutorials, 2017,19(4): 2432-2455. |
[44] | AKHTAR Z , NAM Y S , GOVINDAN R ,et al. Oboe:auto-tuning video ABR algorithms to network conditions[C]// Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2018: 44-58. |
[45] | VAN H N , HOANG D T , NGUYEN D N ,et al. Optimal and fast real-time resource slicing with deep dueling neural networks[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1455-1470. |
[46] | MAO H , SCHWARZKOPF M , VENKATAKRISHNAN S B ,et al. Learning scheduling algorithms for data processing clusters[C]// Proceedings of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2019: 270-288. |
[47] | DONG M , MENG T , ZARCHY D ,et al. PCC vivace:online-learning congestion control[C]// USENIX Symposium on Networked Systems Design and Implementation. Berkeley:USENIX Association, 2018: 343-356. |
[48] | VALADARSKY A , SCHAPIRA M , SHAHAF D ,et al. Learning to route[C]// Proceedings of the 16th ACM Workshop on Hot Topics in Networks. New York:ACM Press, 2017: 185-191. |
[49] | RAVIDAS S , LEKIDIS A , PACI F ,et al. Access control in Internet-of-things:a survey[J]. Journal of Network and Computer Applications, 2019,144: 79-101. |
[50] | SIBAI R E , GEMAYEL N , ABDO J B ,et al. A survey on access control mechanisms for cloud computing[J]. Transactions on Emerging Telecommunications Technologies, 2020:doi.org/10.1002/ett.3720. |
[51] | KOCABAS O , SOYATA T . Towards privacy-preserving medical cloud computing using homomorphic encryption[M]. Hershey: IGI Global, 2020. |
[52] | LIU H , LANG B . Machine learning and deep learning methods for intrusion detection systems:a survey[J]. Applied Sciences, 2019,9(20): 4396. |
[53] | SHONE N , NGOC T N , PHAI V D ,et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018,2(1): 41-50. |
[54] | WU D , XIA Y , SUN X S ,et al. Masking failures from application performance in data center networks with shareable backup[C]// Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2018: 176-190. |
[55] | LUCKIE M , BEVERLY R . The impact of router outages on the AS-level Internet[C]// Proceedings of the Conference of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2017: 488-501. |
[56] | TOOTAGHAJ D Z , BARTOLINI N , KHAMFROUSH H ,et al. On progressive network recovery from massive failures under uncertainty[J]. IEEE Transactions on Network and Service Management, 2018,16(1): 113-126. |
[57] | LI D , SHEN X , CHEN N ,et al. Space-based information service in Internet Plus Era[J]. Science China Information Sciences, 2017,60(10): 102308. |
[58] | LIU J , SHI Y , FADLULLAH Z M ,et al. Space-air-ground integrated network:a survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2714-2741. |
[59] | CASONI M , GRAZIA C A , KLAPEZ M ,et al. Integration of satellite and LTE for disaster recovery[J]. IEEE Communications Magazine, 2015,53(3): 47-53. |
[60] | MENDOZA F , FERRúS R , SALLENT O . A traffic distribution scheme for 5G resilient backhauling using integrated satellite networks[C]// 2017 13th International Wireless Communications and Mobile Computing Conference. Piscataway:IEEE Press, 2017: 1671-1676. |
[61] | ZHAO C , SHI M , HUANG M M ,et al. Authentication Scheme based on hashchain for space-air-ground integrated network[C]// ICC 2019-2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6. |
[1] | 郭渊博, 李勇飞, 陈庆礼, 方晨, 胡阳阳. 融合Focal Loss的网络威胁情报实体抽取[J]. 通信学报, 2022, 43(7): 85-92. |
[2] | 杨思锦, 庄雷, 宋玉, 王家兴, 阳鑫宇. 多模态网络中时间敏感网络模态的智能调度机制[J]. 通信学报, 2022, 43(5): 82-91. |
[3] | 王鹏, 张修社, 索龙, 史可懿. 基于随机时变图的时间确定性网络路由算法[J]. 通信学报, 2021, 42(9): 21-30. |
[4] | 张红斌, 尹彦, 赵冬梅, 刘滨. 基于威胁情报的网络安全态势感知模型[J]. 通信学报, 2021, 42(6): 182-194. |
[5] | 潘恬, 林兴晨, 张娇, 黄韬, 刘韵洁. 基于高性能包处理架构VPP的带内网络遥测系统[J]. 通信学报, 2021, 42(3): 75-90. |
[6] | 张腾飞, 余顺争. 移动设备加密流量的用户信息探测研究展望[J]. 通信学报, 2021, 42(2): 154-167. |
[7] | 程旭, 王莹莹, 张年杰, 付章杰, 陈北京, 赵国英. 基于空间感知的多级损失目标跟踪对抗攻击方法[J]. 通信学报, 2021, 42(11): 242-254. |
[8] | 苏建忠, 张华宇, 朱海龙. 结合SDN控制器的TSN周期性带宽预留值计算方法[J]. 通信学报, 2021, 42(10): 23-31. |
[9] | 李硕朋, 方娟, 陈肯. 基于SRv6的确定性网络服务共享保护方案[J]. 通信学报, 2021, 42(10): 32-42. |
[10] | 罗智勇,杨旭,刘嘉辉,许瑞. 基于贝叶斯攻击图的网络入侵意图分析模型[J]. 通信学报, 2020, 41(9): 160-169. |
[11] | 吴武飞,李仁发,曾刚,谢勇,谢国琪. 智能网联车网络安全研究综述[J]. 通信学报, 2020, 41(6): 161-174. |
[12] | 李涛,郭渊博,琚安康. 融合对抗主动学习的网络安全知识三元组抽取[J]. 通信学报, 2020, 41(10): 80-91. |
[13] | 周翰逊,陈晨,冯润泽,熊俊坤,潘宏,郭薇. 基于值导数GRU的移动恶意软件流量检测方法[J]. 通信学报, 2020, 41(1): 102-113. |
[14] | 蒋侣,张恒巍,王晋东. 基于信号博弈的移动目标防御最优策略选取方法[J]. 通信学报, 2019, 40(6): 128-137. |
[15] | 黄韬,汪硕,黄玉栋,郑尧,刘江,刘韵洁. 确定性网络研究综述[J]. 通信学报, 2019, 40(6): 160-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|