通信学报 ›› 2021, Vol. 42 ›› Issue (2): 124-133.doi: 10.11959/j.issn.1000-436x.2021036

• 学术论文 • 上一篇    

物联网数据收集中无人机路径智能规划

付澍1,2, 杨祥月1, 张海君3, 陈晨1, 喻鹏4, 简鑫1, 刘敏1   

  1. 1 重庆大学微电子与通信工程学院,重庆 400030
    2 重庆大学信息物理社会可信服务计算教育部重点实验室,重庆 400030
    3 北京科技大学计算机与通信工程学院,北京 100083
    4 北京邮电大学网络与交换技术国家重点实验室,北京 100876
  • 修回日期:2020-11-20 出版日期:2021-02-01 发布日期:2021-02-01
  • 作者简介:付澍(1985- ),男,贵州贵阳人,博士,重庆大学副教授、硕士生导师,主要研究方向为星地通信、NOMA、物联网、网络一体化等。
    杨祥月(1995- ),女,贵州毕节人,重庆大学硕士生,主要研究方向为机器学习、无人机数据收集、路径规划等。
    张海君(1986- ),男,辽宁朝阳人,博士,北京科技大学教授、博士生导师,主要研究方向为6G移动通信、人工智能与无线网络等。
    陈晨(1988- ),男,江苏淮安人,博士,重庆大学研究员、博士生导师,主要研究方向为面向6G和物联网的无线光通信技术。
    喻鹏(1986− ),男,湖北随州人,博士,北京邮电大学副教授、博士生导师,主要研究方向为5G/6G网络智能管控。
    简鑫(1987- ),男,四川自贡人,博士,重庆大学副教授、硕士生导师,主要研究方向为应用统计数学、物联网无线接入技术及应用、分布式算法等。
    刘敏(1975- ),女,四川大竹人,重庆大学教授、博士生导师,主要研究方向为光通信与光网络。
  • 基金资助:
    国家自然科学基金资助项目(61701054);中央高校基本科研业务费专项资金资助项目(2020CDJQY-A001);中央高校基本科研业务费专项资金资助项目(2020CDJGFWDZ014)

UAV path intelligent planning in IoT data collection

Shu FU1,2, Xiangyue YANG1, Haijun ZHANG3, Chen CHEN1, Peng YU4, Xin JIAN1, Min LIU1   

  1. 1 School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400030, China
    2 Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400030, China
    3 School of Computer &Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
    4 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Revised:2020-11-20 Online:2021-02-01 Published:2021-02-01
  • Supported by:
    The National Natural Science Foundation of China(61701054);The Fundamental Research Funds for the Central Universities(2020CDJQY-A001);The Fundamental Research Funds for the Central Universities(2020CDJGFWDZ014)

摘要:

为解决无人机在数据收集过程中的路径规划问题,将其分为全局路径规划和局部路径规划。针对全局路径规划,将其建模为一个定向问题,定向问题是背包问题和旅行商问题2种经典优化问题的组合。采用指针网络深度学习对该模型进行求解,并在无人机能量约束下得到其服务节点集合及服务顺序。针对局部路径规划,基于无人机接收到节点的参考信号强度,通过深度Q网络学习对无人机局部飞行路径进行规划,使无人机逼近节点位置并服务各节点。仿真结果表明,所提方案能够在无人机能量约束下有效提升其数据收集的收益。

关键词: 无人机, 数据收集, 路径规划, 指针网络, 深度Q网络

Abstract:

To solve the problem of path planning of UAV data collection, it was generally be divided into global path planning and local path planning.For global path planning, it was modeled as an orientation problem, which was a combination of two classical optimization problems, the knapsack problem and the traveling salesman problem.The pointer network of deep learning was used to solve the model to obtain the service node set and service order under the energy constraint of the UAV.In terms of the local path planning, the reference signal strength (RSS) of the sensor node received by UAV was employed to learn the local flight path of UAV by deep Q network, which enabled the UAV to approach and serve the nodes.Simulation results show that the proposed scheme can effectively improve the revenue of UAV data collection under the energy constraint of UAV.

Key words: unmanned aerial vehicle, data collection, path planning, pointer network, deep Q network

中图分类号: 

No Suggested Reading articles found!