[1] 《隧道建设(中英文)》编辑部. 世界地铁数据·2018[J]. 隧道建设(中英文), 2018, 38(12): 2077-2080.
Editorial Department of Tunnel Construction. World metro data, 2018 [J]. Tunnel Construction, 2018, 38(12): 2077-2080.
[2] 韩宝明, 陈佳豪, 杨运节, 等. 2019年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 2020, 33(1): 4-8.
HAN B M, CHEN J H, YANG Y J, et al. Statistical analysis of urban rail transit operation in the world in 2019: a review[J]. Urban Rapid Rail Transit, 2020, 33(1): 4-8.
[3] 孙世超, 顾保南, 邓澄远. 2015年中国城市轨道交通运营线路统计和分析: 中国城市轨道交通“年报快递”之三[J]. 城市轨道交通研究, 2016, 19(1): 1-4, 9.
SUN S C, GU B N, DENG C Y. Statistical analysis of urban rail transit lines in 2015 China—express delivery of annual report on urban rail transit Ⅲ[J]. Urban Mass Transit, 2016, 19(1): 1-4, 9.
[4] 曹炳坤. 世界地铁发展令人瞩目[J]. 城市公共交通, 2003(5): 33.
CAO B K. The world’s remarkable development of subway[J]. Urban Public Transport, 2003(5): 33.
[5] CAO Y, WANG Z C, LIU F, et al. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6331-6342.
[6] 冷勇林, 陈德旺, 阴佳腾. 基于专家系统及在线调整的列车智能驾驶算法[J]. 铁道学报, 2014, 36(2): 62-68.
LENG Y L, CHEN D W, YIN J T. An intelligent train operation(ITO)algorithm based on expert system and online adjustment[J]. Journal of the China Railway Society, 2014, 36(2): 《智能科学与技术学报》
[7] PU Q, ZHU X M, ZHANG R T, et al. Speed profile tracking by an adaptive controller for subway train based on neural network and PID algorithm[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10656-10667.
[8] YIN J T, SU S, XUN J, et al. Data-driven approaches for modeling train control models: comparison and case studies[J]. ISA Transactions, 2020, 98: 349-363.
[9] YUAN W C, FREY H C. Potential for metro rail energy savings and emissions reduction via eco-driving[J]. Applied Energy, 2020, 268: 114944.
[10] 温故. 世界上第一条地铁[J]. 城市公共交通, 2008(5): 41.
WEN G. The first subway in the world[J]. Urban Public Transport, 2008(5): 41.
[11] 齐长宝, 臧胜超, 段修平. 地铁车辆全自动驾驶系统发展分析[J]. 福建质量管理, 2019(23): 246.
QI C B, ZANG S C, DUAN X P. Development analysis of metro vehicle automatic driving system [J]. Fujian ZhiliangGuanli, 2019(23): 246.
[12] 汤力成. 考虑ATO控制策略的城轨列车推荐速度曲线优化[D]. 北京: 北京交通大学, 2018.
TANG L C. Optimization of recommended speed curve considering ATO control strategy for urban rail transit[D]. Beijing: Beijing Jiaotong University, 2018.
[13]KWON S D , LEE H S . A study of unmanned light rail vehicle(K-AGT) system engineering process under safety requirement, IEC 62267[J]. Journal of the Korea Society of Systems Engineering, 2013, 9(1): 1-11..
[14] 赵红. 列车自动驾驶系统(ATO系统)在地铁中的应用[J]. 电子世界, 2014(7): 30-30, 32.
ZHAO H. Application of automatic train driving system (ATO) in subway system [J]. Electronics World, 2014(7): 30-30, 32.
[15] 冯立勋. 浅谈上海地铁17号线车辆特点[J]. 中国高新区, 2018, 000(018):46.
FENG L X. On the characteristics of Shanghai metro line 17[J]. Science & Technology Industry Parks, 2018, 000 (018): 46.
[16] 饶东. 全自动运行系统地铁车辆技术[J]. 铁路技术创新, 2015(4): 13-17.
RAO D. Metro vehicle technology with automatic operation system [J]. Railway Technical 《智能科学与技术学报》
第 1 期 文章题目 ·15·
Innovation, 2015(4): 13-17.
[17] 缪根欣. 巴黎地铁MP89型新动车组的试验[J]. 控制与信息技术, 1995(7): 20.
MIAO G X. Test of MP89 EMU of Paris metro[J]. Control and Information Technology, 1995(7): 20.
[18] 任安萍. 浅谈我国全自动无人驾驶地铁的发展[J]. 科技视界, 2012(25): 207-208.
REN A P. The development of fully automated and driverless subway in China[J]. Science & Technology Vision, 2012(25): 207-208.
[19] 傅世善. 闭塞与列控概论第十讲移动闭塞概述[J]. 铁路通信信号工程技术, 2006, 3(4): 61-63.
FU S S. Introduction to block and train control lecture 10 overview of moving block [J]. Railway Signalling& Communication Engineering, 2006, 3(4): 61-63.
[20] 赵有明, 方鸣, 刘潍清. 欧洲轨道交通技术类研究项目综述[J]. 现代城市轨道交通, 2014(1): 1-6.
ZHAO Y M, FANG M, LIU W Q. Overview on technology research projects in rail transit in European[J]. Modern Urban Transit, 2014(1): 1-6.
[21] 张崔中. 我国首条全自动驾驶地铁“上岗”[J]. 新长征(党建版), 2017(5): 60.
ZHANG C Z. China’s first fully automatic Metro “on duty” [J]. New Long March, 2017(5): 60.
[22] 宗明, 郜春海, 何燕. 基于CBTC控制的全自动驾驶系统[J]. 都市快轨交通, 2006, 19(3): 34-36.
ZONG M, GAO C H, HE Y. Fully automatic operation system based on CBTC[J]. Urban Rapid Rail Transit, 2006, 19(3): 34-36.
[23] 王浩, 林湛,杨霓霏, 等. 轨道交通国产化CBTC系统技术创新点研究[J]. 铁路计算机应用, 2014, 23(1): 58-60.
WANG H, LIN Z, YANG N F, et al. Research on technical innovative points of domestic CBTC System of Urban Transit[J]. Railway Computer Application, 2014, 23(1): 58-60.
[24] 冷勇林. 基于专家经验和机器学习的列车智能驾驶算法研究[D]. 北京: 北京交通大学, 2013. 《智能科学与技术学报》
第 1 期 文章题目 ·16·
LENG Y L. Intelligent train operation algorithm based on expert knowledge and machine learning[D]. Beijing: Beijing Jiaotong University, 2013.
[25] 陈德旺, 章明亮, 沈镛. 智慧地铁: 基于大数据与人工智能的新型地铁系统[J]. 智能城市, 2018, 4(19): 8-10.
CHEN D W, ZHANG M L, SHEN Y. Intelligent metro: new metro system based on big data and artificial intelligence[J]. Intelligent City, 2018, 4(19): 8-10.
[26] WANG H N, LIU Z, ZHANG YY, et al. Overview of deep reinforcement learning [J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 63-82.
[27] REBENTROST P, MOHSENI M, LLOYD S. Quantum support vector machine for big data classification[J]. Physical Review Letters, 2014, 113(13): 130503.
[28]FAN X N, MALONE B, YUAN C H, et al. Finding optimal Bayesian network structures with constraints learned from data[C]//Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence. [S.l.:s.n.], 2014.
[29] FIORE U, PALMIERI F, CASTIGLIONE A, et al. Network anomaly detection with the restricted Boltzmann machine[J]. Neurocomputing, 2013, 122: 13-23.
[30] HUANG W H, SONG G J, HONG H K, et al. Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201.
[31] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 1725-1732.
[32]SUTTON R S , BARTO A G . Reinforcement Learning[J]. A Bradford Book, 1998, 15(7):665-685.
[33] CORLU C G, DE LA TORRE R, SERRANO-HERNANDEZ A, et al. Optimizing energy consumption in transportation: literature review, insights, and research opportunities[J]. Energies, 2020, 13(5): 1115.
[34] 鲁明旭, 叶银忠, 马向华. 神经网络在地铁客流预测中的应用[J]. 机械研究与应用, 2012,
《智能科学与技术学报》
第 1 期 文章题目 ·17·
25(3): 86-89.
LU M X, YE Y Z, MA X H. Application of neural network in the subway passenger flow prediction[J]. Mechanical Research & Application, 2012, 25(3): 86-89.
[35] 姜海. 浅谈5G在城市轨道交通未来发展及应用研究[C]//第六届智慧城市与轨道交通国际学术峰会论文集. 山东:济南,2019.
JIANG H. Research on the future development and application of 5g in urban rail transit [C]// Proceedings of the 6th International Academic Summit on Smart Urban and Rail Transit. Shandong: Jinan, 2019.
[36] 施浚珲. 人工智能在无人驾驶轨道列车中的应用[J]. 科技风, 2019(31):8-9.
SHI J H. Application of artificial intelligence in unmanned rail train [J]. Science and technology wind, 2019 (31): 8-9
[37] 吴飞, 廖彬兵, 韩亚洪. 深度学习的可解释性[J]. 航空兵器, 2019, 26(1): 39-46.
WU F, LIAO B B, HAN Y H. Interpretability for deep learning[J]. Aero Weaponry, 2019, 26(1): 39-46.
[38]郑庆华. 人机混合增强智能的典型应用专题前言[J]. 计算机研究与发展, 2020, 57(12): 2479-2480.
ZHENG Q H. Foreword of typical application of human machine hybrid enhanced intelligence [J]. Computer Research and Development, 2020, 57 (12): 2479-2480
[39] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3.
ZHENG N N. The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(1): 1-3.
[40] 陈德旺, 蔡际杰, 黄允浒. 面向可解释性人工智能与大数据的模糊系统发展展望[J]. 智能科学与技术学报, 2019, 1(4): 327-334.
CHEN D W, CAI J J, HUANG Y H. Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(4): 327-334.
[41] 赵文迪, 陈德旺, 卓永强, 等. 深度神经模糊系统算法及其回归应用[J]. 自动化学报, 2020, 46(11): 2350-2358. ZHAO W D, CHEN D W, ZHUO Y Q, et al. Deep neural fuzzy system 《智能科学与技术学报》
第 1 期 文章题目 ·18·
algorithm and its regression application[J]. Acta AutomaticaSinica, 2020, 46(11): 2350-2358.
|