[1] FERNANDES K, CHICCO D, CARDOSO J S, et al. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis[J]. PeerJ Computer Science, 2018, 4: e154.
[2] SUN H F, YANG J H, FAN R B, et al. Stepwise local stitching ultrasound image algorithms based on adaptive iterative threshold Harris corner features[J]. Medicine, 2020, 99(37): e22189.
[3] HSU W Y, LU C C, HSU Y Y. Improving segmentation accuracy of CT kidney cancer images using adaptive active contour model[J]. Medicine, 2020, 99(47): e23083.
[4] 何安良, 程兴保, 廖龙长, 等. 耦合H-minima与数学形态学的分水岭遥感图像分割方法[J]. 东华理工大学学报(自然科学版), 2020, 43(4): 396-400.
HE A L, CHENG X B, LIAO L C, et al. An improved watershed method for remote sensing image segmentation coupling H-minima with mathematical Morphology[J]. Journal of East China University of Technology (Natural Science), 2020, 43(4): 396-400.
[5] HE A L, CHENG X B, LIAO L C, et al. A watershed remote sensing image segmentation method based on H-minima and mathematical morphology[J]. Journal of East China Institute of Technology (Natural Science Edition), 2020, 43(4): 396-400.
[6] CHO M. Performance comparison of two ellipse fitting-based cell separation algorithms[J]. Journal of Information and Communication Convergence Engineering, 2015, 13(3): 215-219.
[7] KOYUNCU C F, AKHAN E, ERSAHIN T, et al. Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation[J]. Cytometry Part A, 2016, 89(4): 338-349.
[8] 廖苗, 赵于前, 曾业战, 等. 基于支持向量机和椭圆拟合的细胞图像自动分割[J]. 浙江大学学报(工学版), 2017, 51(4): 722-728.
LIAO M, ZHAO Y Q, ZENG Y Z, et al. Automatic segmentation for cell images based on support vector machine and ellipse fitting[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(4): 722-728.
[9] 杨秀杰, 李法平. 基于曲率和活动轮廓模型的重叠细胞分割算法[J]. 西南师范大学学报(自然科学版), 2018, 43(4): 41-47.
YANG X J, LI F P. Overlapping cells segmentation algorithm based on curvature and active contour Model[J]. Journal of Southwest China Normal University (Natural Science Edition), 2018, 43(4): 41-47.
[10] 何国生, 施露露, 邹爽爽, 等. 基于自适应阈值的间充质干细胞分割方法研究[J]. 电子测量
《智能科学与技术学报》
与仪器学报, 2019, 33(6): 18-23.
HE G S, SHI L L, ZOU S S, et al. Research on mesenchymal stem cells segmentation based on adaptive threshold[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(6): 18-23.
[11] FABIJAŃSKA A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network[J]. Artificial intelligence in medicine, 2018, 88: 1-13.
[12] NASR-ESFAHANI E, RAFIEI S, JAFARI M H, et al. Dense pooling layers in fully convolutional network for skin lesion segmentation[J]. Computerized Medical Imaging and Graphics, 2019, 78: 101658.
[13] SAQIB Q, HAI J, RAN Z, et al. A variant form of 3D-UNet for infant brain segmentation[J]. Future Generation Computer Systems, 2020, 108(7): 613-623.
[14]SHIMAA EL-BANA, AHMAD AL-KABBANY, MAHA S. A two-stage framework for automated malignant pulmonary nodule detection in CT scans[J]. Diagnostics, 2020, 10(3): e131.
[15] LIU Z. Construction and verification of color fundus image retinal vessels segmentation algorithm under BP neural network[J]. The Journal of Supercomputing, 2021, 77(7): 7171-7183.
[16] 崔文成, 张鹏霞, 邵虹. 基于深度可分离卷积网络的皮肤镜图像病灶分割方法[J]. 智能科学与技术学报, 2020, 2(4): 385-393.
CUI W C, ZHANG P X, SHAO H. Dermoscopic image lesion segmentation method based on deep separable convolutional network[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 385-393.
[17] 王涛, 陈凡胜, 苏晓锋. 基于各向异性双边滤波红外背景抑制方法研究[J]. 湖南大学学报(自然科学版), 2018, 45(2): 119-126.
WANG T, CHEN F S, SU X F. Research of infrared background suppression method based on anisotropic bilateral Filtering[J]. Journal of Hunan University (Natural Sciences), 2018, 45(2): 119-126.
[18] 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学, 2017, 10(4): 438-448.
WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms[J]. Chinese Optics, 2017, 10(4): 438-448.
[19] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[J]. arXiv preprint, 2018, arXiv:1804.03999.
[20] WANG H, ZHANG H, RAY N. Clump splitting via bottleneck detection and shape classification[J]. Pattern Recognition, 2012, 45(7): 2780-2787.
|