[1] FENG R M, ZONG Y N, CAO S M, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? [J]. Cancer Communications (London, England), 2019, 39(1): 22.
[2] 刘树范, 阚秀. 细胞病理学[M]. 北京: 中国协和医科大学出版社, 2011.
LIU S F, KAN X. Cytopathology[M]. Beijing: Peking Union Medical College Press, 2011.
[3] 卞修武, 平轶芳. 我国病理学科发展面临的挑战和机遇[J]. 第三军医大学学报, 2019, 41(19): 1815-1817.
BIAN X W, PING Y F. Pathology in China: challenges and opportunities[J]. Journal of Third Military Medical University, 2019, 41(19): 1815-1817.
[4] 王丽会, 秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6): 83-104.
WANG L H, QIN Y B. State of the art and future perspectives of the applications of deep learning in the medical image analysis[J]. Big Data Research, 2020, 6(6): 83-104.
[5] TERAMOTO A, TSUKAMOTO T, KIRIYAMA Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks[J]. BioMed Research International, 2017, 2017: 4067832.
[6] TERAMOTO A, YAMADA A, KIRIYAMA Y, et al. Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network[J]. Informatics in Medicine Unlocked, 2019, 16: 100205.
[7] TERAMOTO A, TSUKAMOTO T, YAMADA A, et al. Deep learning approach to classification of lung cytological images: two-step training using actual and synthesized images by progressive growing of generative adversarial networks[J]. PLoS One, 2020, 15(3): e0229951.
[8] ZHU H Z, ZHANG Y Y, LI M, et al. Exploring deep learning for efficient and reliable mobile sensing[J]. IEEE Network, 2018, 32(4): 6-7.
[9] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[10] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. [S.l.:s.n.], 2015.
[11] 崔文成, 张鹏霞, 邵虹. 基于深度可分离卷积网络的皮肤镜图像病灶分割方法[J]. 智能科学与技术学报, 2020, 2(4): 385-393.
CUI W C, ZHANG P X, SHAO H. Dermoscopic image lesion segmentation method based on deep separable convolutional network[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 385-393.
[12] ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks[C]// Proceedings of the Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. [S.l.:s.n.], 2018.
[13] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[J]. arXiv preprint, 2018, arXiv: 1804.03999.
[14] WANG W, YU K C, HUGONOT J, et al. Recurrent U-net for resource-constrained segmentation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 2142-2151.
[15] CHEN W L, ZHANG Y, HE J J, et al. Prostate segmentation using 2D bridged U-net[C]//Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2019: 1-7.
[16] ORLANDO J I, SEEBÖCK P, BOGUNOVIĆ H, et al. U2-net: a Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans[C]//Proceedings of 2019 IEEE 16th International Symposium on Biomedical Imaging. Piscataway: IEEE Press, 2019: 1441-1445.
[17] LI X M, CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
[18] GUAN S, KHAN A A, SIKDAR S, et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 568-576.
[19] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2261-2269.
[20] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint, 2015, arXiv:1502.03167.
[21] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1026-1034.
[22] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 Fourth International Conference on 3D Vision (3DV). Piscataway: IEEE Press, 2016: 565-571.
[23] Kingma D P , Ba J . Adam: A Method for Stochastic Optimization[J]. arXiv e-prints, 2014.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv preprint, 2014, arXiv:1412.6980.
[24] LEVANDOWSKY M, WINTER D. Distance between sets[J]. Nature, 1971, 234(5323): 34-35.
[25] DICE L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3): 297-302.
《智能科学与技术学报
|