[1] STEPHANEDES Y J, MICHALOPOULOS P G, PLUM R A.
Comparative performance evaluation of demand prediction algorithms[J]. Traffic
Engineering and Control, 1981, 22(10): 544-547.
[2] WILLIAMS B M, HOEL L A. Modeling and forecasting
vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical
results[J]. Journal of transportation engineering, 2003, 129(6): 664-672.
[3] VAN L, VAN H. Short-term traffic and travel time
prediction models[J]. Artificial Intelligence Applications to Critical
Transportation Issues, 2012, 22(1): 22-41.
[4] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal
residual networks for citywide crowd flows prediction[C]// Proceedings of the
AAAI conference on artificial intelligence, 2017, 31(1).
[5] KIPF T N, WELLING M. Semi-supervised classification
with graph convolutional networks[C]// International Conference on Learning
Representations, 2017.
[6] GUO S N, LIN Y F, FENG N, et al. Attention based
spatial-temporal graph convolutional networks for traffic flow forecasting[C]//
Proceedings of the AAAI conference on artificial intelligence, 2019, 33(01):
922-929.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is
all you need[J]. Advances in neural information processing systems, 2017, 30.
[8] GUO K, HU Y L, QIAN Z, et al. Dynamic graph
convolution network for traffic forecasting based on latent network of Laplace
matrix estimation[J]. IEEE Transactions on Intelligent Transportation Systems,
2020, 23(2): 1009-1018.
[9] Bai L, Yao L, Li C, et al. Adaptive graph convolutional
recurrent network for traffic forecasting[J]. Advances in neural information
processing systems, 2020, 33: 17804-17815.
[10] 何俊, 张彩庆, 李小珍, 等. 面向深度学习的多模态融合技术研究综述[J]. 计算机工程, 2020, 46(5): 1-11.
HE J, ZHANG C, LI X, et al. Survey of Research on
Multimodal Fusion Technology for Deep Learning[J]. Computer Engineering, 2020,
46(5): 1-11.
[11] 王冬海, 卢峰, 方晓蓉, 等. 海洋大数据关键技术及在灾害天气下船舶行为预测上的应用[J]. 大数据, 2017, 3(4): 81-90.
WANG D,
LU F, FANG X, et al. Ocean big data and applications in ship behavior
prediction under disaster weather[J]. Big Data Research, 2017, 3(4): 81-90.
[12] 陈汐, 王印海, 代壮, 等. 基于多源城市交通出行数据的定制公交需求辨识方法研究[J]. 大数据, 2020, 6(6): 105-118.
CHEN X,
WANG Y, DAI Z, et al. Research on demand identification for customized bus
based on multi-source mobility data[J]. Big Data Research, 2020, 6(6): 105-118.
[13] 匡秋明, 杨雪冰, 张文生, 等. 多源数据融合高时空分辨率晴雨分类[J]. 软件学报, 2017, 28(11):2925-2939.
KUANG Q,
YANG X, ZHENG W, et al. Fusion of multi-source data for rain/no-rain
classification with high spatiotemporal resolution[J]. Journal of Software,
2017, 28(11):2925−2939.
[14] JIN Z C, GONG T, YU D D, et al. Mining contextual
information beyond image for semantic segmentation[C]// Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021: 7231-7241.
[15] BIANCHI F M, GRATTAROLA D, ALIPPI C. Spectral
clustering with graph neural networks for graph pooling[C]// International
conference on machine learning, PMLR, 2020: 874-883.
[16] 张建晋, 王韫博, 龙明盛, 等. 面向季节性时空数据的预测式循环网络及其在城市计算中的应用[J]. 计算机学报, 2020, 43(2): 286-302.
ZHANG J, WANG Y, LONG M, et al. Predictive
Recurrent Networks for Seasonal Spatiotemporal Data with Applications to Urban
Computing[J]. CHINESE JOURNAL OF COMPUTERS, 2020, 43(2): 286-302.
[17] 乔少杰, 韩楠, 岳昆, 等. 基于数据场聚类的共享单车需求预测模型[J]. 软件学报, 2021, 33(4): 1451-1476.
QIAO S,
HAN N, YUE K, et al. Shared-bike Demand Prediction Model Based on Station
Clustering[J]. Journal of Software, 2022, 33(4): 1451−1476.
[18] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769.
FENG N, GUO S, SONG C, et al. Multi-component
Spatial-temporal Graph Convolution Networks for Traffic Flow Forecasting[J].
Journal of Software, 2019, 30(3):759-769.
[19] LIANG Y X, OUYANG K, SUN J K, et al. Fine-grained
urban flow prediction[C]// Proceedings of the Web Conference, 2021: 1833-1845.
[20] Lin Z, Feng J, Lu Z, et al. DeepSTN+: Context-aware
spatial-temporal neural network for crowd flow prediction in metropolis[C]// Proceedings
of the AAAI conference on artificial intelligence, 2019, 33(01): 1020-1027.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual
learning for image recognition[C]// Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016: 770-778.
[22] SCHUSTER M, PALIWAL K K. Bidirectional recurrent
neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11):
2673-2681.
[23] HOCHREUTER S, SCHMIDHUBER J. Long short-term
memory[J]. Neural computation, 1997, 9(8): 1735-1780.
|