[1] |
Banko M , Brill E , KIEKINTVELD C , . Scaling to very large corpora for natural language disambiguation. Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL), Toulouse, France, 2001,26~33.
|
[2] |
Brants T , Popat C A , Xu P , et al. Large language models in machine translation. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Language Learning, Prague, Czech Republic, 2007,858-867.
|
[3] |
Wang Y , Zhao X M , Sun Z L , et al. Peacock: learning long-tail topic features for industrial applications. ACM Transactions on Intelligent Systems and Technology, 2014,9(4)
|
[4] |
中国计算机学会大数据专家委员会. 2015年中国大数据发展趋势预测. 中国计算机学会通讯, 2014,11(1): 48-52.
|
|
CCF Task Force on Big Data. Forecast for the development trend of big data in 2015 Communications of the China Computer Federation (CCCF), 2014,11(1): 48-52.
|
[5] |
Gonzalez J E Emerging systems for large-scale machine learning. Proceedings of Tutorial on International Conference for Machine Learning(ICML) 2014, Beijing, China, 2014
|
[6] |
中国计算机学会大数据专家委员会. 2014年中国大数据技术与产业发展白皮书. 2014中国大数据技术大会, 北京, 中国, 2014
|
|
CCF Task Force on Big Data. White paper of China’s big data technology and industrial development in 2014 Proceedings of Big Data Conference China, Beijing, China, 2014
|
[7] |
Boehm M , Tatikonda S , Reinwald B . et al. Hybrid parallelization strategies for large-scale machine learning in systemML. Proceedings of the VLDB Endowment, Hangzhou, China 2014
|
[8] |
Markl V , YIN Z . Breaking the chains: on declarative data analysis and data independence in the big data era. Proceedings of the VLDB Endowment, Hangzhou, China 2014
|
[9] |
Kraska T T . MLbase: a distributed machine-learning system. Proceedings of the 6th Conference on Innovative Data Systems Research(CIDR), Asilomar, CA, USA, 2013
|
[10] |
Fan W F , Geerts F , Neven F , . Making queries tractable on big data with preprocessing: through the eyes of complexity theory. Proceedings of the VLDB Endowment, Trento, Italy, 2011:685~696.
|
[11] |
Dean J , Ghemawat S . MapReduce:simplified data processing on large clusters. Communications of the ACM, 2004,51(1): 107~113.
|
[12] |
Zaharia M , Chowdhury M , Das T , et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing. Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation(NSDI), San Jose, CA, USA, 2012141-146.
|
[13] |
Venkataraman S , Bodzsar E , Roy I , et al. Presto: distributed machine learning and graph processing with sparse matrices. Proceedings of the 8th ACM European Conference on Computer Systems(EuroSys), Prague, Czech Republic, 2013197-210.
|
[14] |
Ghoting A , Krishnamurthy S , Pednault E , et al. SystemML: declarative machine learning on MapReduce. Proceedings of International Conference on Data Engineering (ICDE), Hannover, Germany, 2011231~242.
|
[15] |
Boehm M , Tatikonda S , Reinwald B , et al. Hybrid parallelization strategies for large-scale machine learning in SystemML. Proceedings of the VLDB Endowment, Hangzhou, China, 2011231-242.
|
[16] |
Low Y , Bickson D , Gonzalez J , et al. Distributed graphLab: a framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment, Istanbul, Turkey, 2012716~727.
|
[17] |
Li M , Andersen G D , Park W J , et al. Scaling distributed machine learning with the parameter server. Proceedings of Operating Systems Design and Implementation (OSDI), Broomfield, CD, USA, 2014;583~598.
|
[18] |
Ho Q , Cipar J , Cui H W J , et al. More effective distributed ml via a stale synchronous parallel parameter server. Proceedings of Advances in Neural Information Processing Systems (NIPS), Nevada, USA, 2013:1223~1231.
|
[19] |
Alexandrov A , Bergmann R , Ewen S , et al. The stratosphere platform for big data analytics. Vldb Journal, 2014,23(6):939-964.
|
[20] |
Battré D , Ewen S , Hueske F , et al. Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. Proceedings of ACM Symposium on Cloud Computing(SoCC), Indianapolis, Indiana, USA, 2010:119~130.
|
[21] |
Dai W , Wei J , Zheng X , et al. Petuum:a framework for iterative-convergent distributed ML. Proceedings of Advances in Neural Information Processing Systems 26, Big Learning Workshop, California, USA, 2013
|
[22] |
邹永强 . Mariana—腾讯深度学习平台的进展与应用. 2014年中国大数据技术大会, 北京,中国, 2014
|
|
Zou Y Q . Marina-the progress and application of deep learning platform of Tencent. Proceedings of Database Technology Conference China 2015, Beijing, China, 2014
|
[23] |
刘伟 . 百度机器学习云平台. 2014年中国大数据技术大会, 北京,中国, 2015
|
|
Liu W . Machine learning cloud platform of Baidu Proceedings of Database Technology Conference China 2015, Beijing, China, 2015
|