大数据 ›› 2016, Vol. 2 ›› Issue (4): 57-68.doi: 10.11959/j.issn.2096-0271.2016042

• 研究 • 上一篇    下一篇

基于仿真大数据的效能评估指标体系构建方法

司光亚,高翔,刘洋,吴琳   

  1. 国防大学信息作战与指挥训练教研部,北京 100091
  • 出版日期:2016-07-20 发布日期:2017-04-27
  • 基金资助:
    军民共用重大研究计划联合基金资助项目;国家自然科学基金资助项目;国家自然科学基金资助项目;国家自然科学基金资助项目

Method for building effectiveness evaluation index system based on big simulation data

Guangya SI,Xiang GAO,Yang LIU,Lin WU   

  1. The Department of Information Operation & Command Training,NDU of PLA,Beijing 100091,China
  • Online:2016-07-20 Published:2017-04-27
  • Supported by:
    The Union of National Natural Science Foundation and the General Equipment Department of China;The National Natural Science Foundation of China;The National Natural Science Foundation of China;The National Natural Science Foundation of China

摘要:

针对武器装备效能评估指标体系中评估指标之间存在的相互依赖与影响的关系以及评估过程主观性较强的情况,提出一种基于仿真大数据采用超网特征参数和ANP相结合构建指标体系的方法。以某次武器装备体系仿真为例,给出了网络化评估指标体系构建流程,并建立了具体的指标体系,同时对指标之间的关联性进行了深度挖掘。实验结果表明,提出的指标体系构建方法具有合理性和有效性,能够为武器装备体系效能评估提供更为可靠的理论依据。

关键词: 仿真大数据, 效能评估, ANP, 关联性分析, 网络化指标体系

Abstract:

In order to cope with the interdependence and interrelationship between evaluation criteria in effectiveness evaluation index system,and to eliminate the subjectivity of expert’s preference in the evaluation process,making use of big simulation data,a method of building index system based on big simulation data of supernetting characteristic parameter and ANP was proposed.Then,by taking a weapon SoS simulation scenario as example,a process of building networked evaluation index system was proposed and the corresponding networked index system was built.Simultaneously,the correlation between criteria was deeply mined.The example analysis verifies the reasonability and effectiveness of proposed method for building evaluation index system.It provides reliable theoretical basis for weapon SoS effectiveness evaluation.

Key words: big simulation data, effectiveness evaluation, analytic network process, correlation analysis, networked index system

No Suggested Reading articles found!