大数据 ›› 2019, Vol. 5 ›› Issue (5): 38-47.doi: 10.11959/j.issn.2096-0271.2019040
贾韬1,夏锋2
出版日期:
2019-09-15
发布日期:
2019-10-11
作者简介:
贾韬(1982-),男,博士,西南大学计算机与信息科学学院教授、副院长,主要研究方向为大数据、复杂网络等,以第一作者(兼共同通信作者)在Nature Human Behaviour、Nature Communications、Physical Review Letters等学术期刊发表多篇论文。获2010年年度国家优秀自费留学生奖学金。|夏锋(1980-),男,博士,大连理工大学教授、博士生导师,软件学院副院长、学术委员会副主任,阿尔法实验室(The Alpha Lab)创始人兼主任,ACM高级会员、IEEE高级会员,主要研究方向为数据科学、大数据、知识管理、系统工程等。出版英文学术专著2部(Springer出版),在国际期刊和国际会议上发表论文290余篇,其中IEEE和ACM期刊论文70余篇。连续5年(2014—2018年)入选“中国高被引学者”榜单。
基金资助:
Tao JIA1,Feng XIA2
Online:
2019-09-15
Published:
2019-10-11
Supported by:
摘要:
科学的复杂性、数据的可用性、对科学研究中客观规律认知的现实需求使得“科学学”这一传统问题转变为新兴的交叉研究热点。科学研究的主导者是科研工作者,研究科学中的规律首先要了解科研工作者的行为特征。梳理、介绍了几个相关的工作,包括科研工作者研究兴趣的演化、科研合作的内在驱动因素、科研团队与科研team的异同、多维度科研评价与学术不端的监测。研究结果可以为科研管理等现实问题提供理论工具和实证支撑。
中图分类号:
贾韬, 夏锋. “科学学”视角下的科研工作者行为研究[J]. 大数据, 2019, 5(5): 38-47.
Tao JIA, Feng XIA. Quantifying patterns in the behavior of scientists in Science of Science study[J]. Big Data Research, 2019, 5(5): 38-47.
[1] | KUHN T S . The structure of scientific revolutions[M]. Chicago: University of Chicago PressPress, 2012. |
[2] | DE SOLLA P D J . Little science,big science and beyond[M]. New York: Columbia University PressPress, 1986. |
[3] | SINATRA R , WANG D , DEVILLE P ,et al. Quantifying the evolution of individual scientific impact[J]. Science, 2016,354(6312):5239. |
[4] | DA SILVA J A T . Does China need to rethink its metrics-and citationbased research rewards policies[J]. Scientometrics, 2017,112(3): 1853-1857. |
[5] | AZOULAY P , GRAFF-ZIVIN J , UZZI B ,et al. Toward a more scientific science[J]. Science, 2018,361(6408): 1194-1197. |
[6] | JONES B F , WUCHTY S , UZZI B . Multiuniversity research teams:shifting impact,geography,and stratification in science[J]. Science, 2008,322(5905): 1259-1262. |
[7] | WUCHTY S , JONES B F , UZZI B . The increasing dominance of teams in production of knowledge[J]. Science, 2007,316(5827): 1036-1039. |
[8] | ZENG A , SHEN Z S , ZHOU J L ,et al. The Science of Science:from the perspective of complex systems[J]. Physics ReportsReview Section of Physics Letters, 2017(714-715): 1-73. |
[9] | FORTUNATO S , BERGSTROM C T B?RNER K ,et al. Science of science[J]. Science, 2018,359(6379). |
[10] | 钱学森 . 希望[J]. 科学学与科学技术管理, 1981(1):7. |
QIAN X S . Hope[J]. Science of Science and Management of S.&.T., 1981(1):7. | |
[11] | WANG D , SONG C , BARABáSI A L . Quantifying long-term scientific impact[J]. Science, 2013,342(6154): 127-132. |
[12] | HSIEHCHEN D , ESPINOZA M , HSIEH A . Multinational teams and diseconomies of scale in collaborative research[J]. Science Advances, 2015,1(8):e1500211. |
[13] | RZHETSKY A , FOSTER J G , FOSTER I T ,et al. Choosing experiments to accelerate collective discovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(47): 14569-14574. |
[14] | JIA T , WANG D , SZYMANSKI B K . Quantifying patterns of research-interest evolution[J]. Nature Human Behaviour, 2017,1(4):78. |
[15] | WAY S F , MORGAN A C , CLAUSET A ,et al. The misleading narrative of the canonical faculty productivity trajectory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(44): 9216-9223. |
[16] | WU L , WANG D , EVANS J A . Large teams develop and small teams disrupt science and technology[J]. Nature, 2019,566(7744): 378-382. |
[17] | XIE Y , ZHANG C , LAI Q . China’s rise as a major contributor to science and technology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(26): 9437-9442. |
[18] | HUANG F . Quality deficit belies the hype[J]. Nature, 2018,564(7735):70. |
[19] | KUHN T S . The essential tension[J]. American Journal of Physics, 1979,47(6): 568-569. |
[20] | AZOULAY P , GRAFF ZIVIN J S , MANSO G . Incentives and creativity:evidence from the academic life sciences[J]. The RAND Journal of Economics, 2011,42(3): 527-554. |
[21] | TIAN X , WANG T Y . Tolerance for failure and corporate innovation[J]. The Review of Financial Studies, 2014,27(1): 211-255. |
[22] | FOSTER J G , RZHETSKY A , EVANS J A . Tradition and innovation in scientists’ research strategies[J]. American Sociological Review, 2015,80(5): 875-908. |
[23] | TANG J , ZHANG J , YAO L ,et al. Arnetminer:extraction and mining of academic social networks[C]// The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 24-27,2008,Las Vegas,USA. New York:ACM Press, 2018: 990-998. |
[24] | XIA F , WANG W , BEKELE T M ,et al. Big scholarly data:a survey[J]. IEEE Transactions on Big Data, 2017,3(1): 18-35. |
[25] | RZHETSKY A , FOSTER J G , FOSTER I T ,et al. Choosing experiments to accelerate collective discovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(47): 14569-14574. |
[26] | COKOL M , IOSSIFOV I , WEINREB C ,et al. Emergent behavior of growing knowledge about molecular interactions[J]. Nature Biotechnology, 2005,23(10): 1243-1247. |
[27] | KABO F W , COTTON-NESSLER N , HWANG Y ,et al. Proximity effects on the dynamics and outcomes of scientific collaborations[J]. Research Policy, 2014,43(9): 1469-1485. |
[28] | LEAHEY E . From sole investigator to team scientist:trends in the practice and study of research collaboration[J]. Annual Review of Sociology, 2016,42(1): 81-100. |
[29] | WANG W , YU S , BEKELE T M ,et al. Scientific collaboration patterns vary with scholars’ academic ages[J]. Scientometrics, 2017,112(1): 329-343. |
[30] | WANG W , LIU J , YANG Z ,et al. Sustainable collaborator recommendation based on conference closure[J]. IEEE Transactions on Computational Social Systems, 2019,6(2): 311-322. |
[31] | National Research Council . Enhancing the effectiveness of team science[M]. Pittsburgh: National Academies PressPress, 2015. |
[32] | 方文东 . 关于科研团队组建的一些认识[J]. 科技管理研究, 2002,22(4): 42-43. |
FANG W D . The attitude about organizing scientific research group[J]. Science and Technology Management Research, 2002,22(4): 42-43. | |
[33] | WANG J , HICKS D . Scientific teams:selfassembly,fluidness,and interdependence[J]. Journal of Informetrics, 2015,9(1): 197-207. |
[34] | LEE Y N , WALSH J P , WANG J . Creativity in scientific teams:unpacking novelty and impact[J]. Research Policy, 2015,44(3): 684-697. |
[35] | DONG Y , MA H , TANG J ,et al. Collaboration diversity and scientific impact[J]..03694. Computer Science,2018,arXiv:1806.03694. |
[36] | YU S , XIA F , ZHANG K ,et al. Team recognition in big scholarly data:exploring collaboration intensity[C]// 2017 IEEE 15th International Conference on Dependable,Autonomic and Secure Computing,September 17-21,2017,St.Petersburg,USA. Piscataway:IEEE Press, 2017: 925-932. |
[37] | BIAGIOLI M , KENNEY M , MARTIN B ,et al. Academic misconduct,misrepresentation and gaming:a reassessment[J]. Research Policy, 2018. |
[1] | 叶雅珍, 朱扬勇. 数字化转型服务平台:面向新竞争格局的企业竞争力建设[J]. 大数据, 2023, 9(3): 3-14. |
[2] | 刘豆豆, 焦宝臣. 高校数据资产编目研究[J]. 大数据, 2023, 9(3): 71-84. |
[3] | 王皓, 潘昱杉, 潘毅. 生成式人工智能大模型赋能的元宇宙生命体:前瞻和挑战[J]. 大数据, 2023, 9(3): 85-96. |
[4] | 吴亚东, 陈家鸣, 罗焱, 王学锋, 黄德春, 倪超, 蓝集明, 李随群, 张巍瀚, 代唯. 彩灯元宇宙研究综述[J]. 大数据, 2023, 9(3): 97-113. |
[5] | 邓钇敏, 张旭龙, 司世景, 王健宗, 肖京. 虚拟人形象合成技术综述[J]. 大数据, 2023, 9(3): 114-139. |
[6] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[7] | 王元卓, 张琨, 陆源. 漫威电影中的智能穿戴[J]. 大数据, 2023, 9(3): 181-183. |
[8] | 万小军. 智能文本生成:进展与挑战[J]. 大数据, 2023, 9(2): 99-109. |
[9] | 王泽宇, 吕艾临, 闫树. 数据要素形成与价值释放规律研究[J]. 大数据, 2023, 9(2): 33-45. |
[10] | 朱扬勇, 谢波峰. 数据财政:数字经济发展过程中的公共利益实现[J]. 大数据, 2023, 9(2): 163-166. |
[11] | 王元卓, 李子健, 陆源. 漫威电影中的图灵测试[J]. 大数据, 2023, 9(2): 167-169. |
[12] | 焦荟聪, 刘文菊, 王赜. 基于指数机制的轨迹差分隐私保护方法[J]. 大数据, 2023, 9(1): 141-152. |
[13] | 林清音, 陈志广. 基于更新热点感知的LSM-Tree查询优化[J]. 大数据, 2023, 9(1): 126-140. |
[14] | 梅宏, 杜小勇, 金海, 程学旗, 柴云鹏, 石宣化, 靳小龙, 王亚沙, 刘驰. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. |
[15] | 贺亚运, 彭俊清, 王健宗, 肖京. 节奏舞者:基于关键动作转换图和有条件姿态插值网络的3D舞蹈生成方法研究[J]. 大数据, 2023, 9(1): 23-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|