大数据 ›› 2021, Vol. 7 ›› Issue (1): 107-123.doi: 10.11959/j.issn.2096-0271.2021008
李文明1, 刘芳1, 吕鹏1, 于彦伟2
出版日期:
2021-01-15
发布日期:
2021-01-01
作者简介:
李文明(1997- ),男,烟台大学计算机与控制工程学院硕士生,主要研究方向为时空数据挖掘基金资助:
Wenming LI1, Fang LIU1, Peng LYU1, Yanwei YU2
Online:
2021-01-15
Published:
2021-01-01
Supported by:
摘要:
随着智慧交通的发展,越来越多的监控摄像头被安装在城市道路路口,这使得利用城市交通监控大数据进行车辆行程时间估计和路径查询成为可能。针对城市出行的行程时间估计问题,提出一种基于城市交通监控大数据的行程时间估计方法UTSD。首先,将交通监控摄像头映射到城市路网,并根据交通监控数据记录构建有向加权的城市路网图;然后,针对行程时间估计,构建时空索引和反向索引结构,时空索引用于快速检索所有车辆的摄像头记录,反向索引用于快速获取每辆车辆的行程时间和经过的摄像头轨迹,这两个索引大大提升了数据查询和行程时间估计的效率;最后,基于构建的索引,给出一种有效的行程时间估计和路径查询方法,根据出发时间、出发地和目的地,在时空索引结构上匹配出发地与目的地共有的车辆,再利用反向索引,快速获得行程时间估计与车辆路线。使用某省会城市的真实交通监控大数据进行实验评估,所提方法UTSD的准确率比基于有向图的Dijkstra最短路径算法和百度算法分别提高了65.02%和40.94%,且UTSD在以7天监控数据作为历史数据的情况下,平均查询时间低于0.3 s,验证了所提方法的有效性和高效性。
中图分类号:
李文明, 刘芳, 吕鹏, 于彦伟. 基于城市交通监控大数据的行程时间估计[J]. 大数据, 2021, 7(1): 107-123.
Wenming LI, Fang LIU, Peng LYU, Yanwei YU. Travel time estimation based on urban traffic surveillance data[J]. Big Data Research, 2021, 7(1): 107-123.
[1] | 刘晓波, 蒋阳升, 唐优华 ,等. 综合交通大数据应用技术的发展展望[J]. 大数据, 2019,5(3): 55-68. |
L IU X B , JIANG Y S , TANG Y H ,et al. Development prospect of integrated transportation big data application technology[J]. Big Data Research, 2019,5(3): 55-68. | |
[2] | WANG Y , ZHENG Y , XUE Y . Travel time estimation of a path using sparse trajectories[C]// The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2014: 25-34. |
[3] | BECKMANN N , KRIEGEL H P , SCHNEIDER R ,et al. The R*-tree: an efficient and robust access method for points and rectangles[C]// The 1990 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1990: 322-331. |
[4] | ZHONG R C , LI G L , TAN K L ,et al. G-tree: an efficient index for KNN search on road networks[C]// The 22nd ACM International Conference on Information &Knowledge Management. New York: ACM Press, 2013: 39-48. |
[5] | KAMEL I , FALOUTSOS C . Hilbert R-tree:an improved R-tree using fractals[R]. 1993. |
[6] | PFOSER D , JENSEN C S , THEODORIDIS Y . Novel approaches to the indexing of moving object trajectories[C]// The 26th International Conference on Very Large Data Bases. [S.l.:s.n.], 2000: 395-406. |
[7] | TAO Y F , PAPADIAS D . Efficient historical R-trees[C]// The 13th International Conference on Scientific and Statistical Database Management. Piscataway: IEEE Press, 2001: 223-232. |
[8] | WANG L H , ZHENG Y , XIE X ,et al. A flexible spatio-temporal indexing scheme for large-scale GPS track retrieval[C]// The 9th International Conference on Mobile Data Management. Piscataway:IEEE Press, 2018: 1-8. |
[9] | CHAKKA V P , EVERSPAUGH A C , PATEL J M . Indexing large trajectory data sets with SETI[C]// The 2003 CIDR Conference. [S.l.:s.n.], 2003: 75-86. |
[10] | FINKEL R A , BENTLEY J L . Quad trees a data structure for retrieval on composite keys[J]. Acta Informatica, 1974,4(1: 1-9. |
[11] | BENTLEY J L . Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975,189: 509-517. |
[12] | JENSEN C S , LIN D , OOI B C . Query and update efficient B+-tree based indexing of moving objects[C]// The 30th International Conference on Very Large Data Bases. [S.l.:s.n.], 2004: 768-779. |
[13] | COMER D . Ubiquitous B-tree[J]. ACM Computing Surveys, 1979,11(2): 121-137. |
[14] | ZOBEL J , MOFFAT A , RAMAMOHANARAO K . Inverted files versus signature files for text indexing[J]. ACM Transactions on Database Systems, 1998,23(4): 453-490. |
[15] | WU C H , HO J M , LEE D T . Traveltime prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004,5(4): 276-281. |
[16] | CHEN H , RAKHA H A , MCGHEE C C . Dynamic travel time prediction using pattern recognition[C]// The 20th World Congress on Intelligent Transportation Systems. [S.l.:s.n.], 2013. |
[17] | HOFLEITNER A , HERRING R , ABBEEL P ,et al. Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(4): 1679-1693. |
[18] | ZHAN X Y , HASAN S , UKKUSURI S V ,et al. Urban link travel time estimation using largescale taxi data with partial information[J]. Transportation Research Part C: Emerging Technologies, 2013,33: 37-49. |
[19] | ZHANG F M , ZHU X Y , HU T ,et al. Urban link travel time prediction based on a gradient boosting method considering spatiotemporal correlations[J]. ISPRS International Journal of Geo-Information, 2016,5(11): 201. |
[20] | NIU X G , ZHU Y , ZHANG X N . DeepSense:a novel learning mechanism for traffic prediction with taxi GPS traces[C]// 2014 IEEE Global Communications Conference. Piscataway: IEEE Press, 2014: 2745-2750. |
[21] | RAHMANI M , JENELIUS E , KOUTSOPOULOS H N . Route travel time estimation using low-frequency floating car data[C]// The 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). Piscataway: IEEE Press, 2013: 2292-2297. |
[22] | CHEN M , CHIEN S I J . Dynamic freeway travel-time prediction with probe vehicle data: link based versus path based[J]. Transportation Research Record, 2001,1768(1): 157-161. |
[23] | JIANG M Y , ZHAO T Q . Vehicle travel time estimation by sparse trajectories[C]// 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). Piscataway: IEEE Press, 2019: 433-442. |
[24] | KINGMA D P , BA J . Adam: a method for stochastic optimization[J]. arXiv preprint, 2014, arXiv:1412.6980.. |
[25] | LI Y , GUNOPULOS D , LU C W ,et al. Urban travel time prediction using a small number of GPS floating cars[C]// The 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2017: 1-10. |
[26] | WANG H J , TANG X F , KUO Y H ,et al. A simple baseline for travel time estimation using large-scale trip data[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-22. |
[27] | JIANG Y J , LI X ,et al. Travel time prediction based on historical trajectory data[J]. Annals of GIS, 2013,19(1): 27-35. |
[28] | 赖永炫, 杨旭, 曹琦 ,等. 一种基于Gradient Boosting的公交车运行时长预测方法[J]. 大数据, 2019,5(5): 58-78. |
LAI Y X , YANG X , CAO Q ,et al. A bus running length prediction method based on Gradient Boosting[J]. Big Data Research, 2019,5(5): 58-78. | |
[29] | YUAN H T , LI G L , BAO Z F ,et al. Effective travel time estimation: when historical trajectories over road networks matter[C]// The 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2020: 2135-2149. |
[30] | DING Y C , LI Y H , ZHOU X ,et al. Sampl ing big trajectory data for traversal trajectory aggregate query[J]. IEEE Transactions on Big Data, 2018,5(4): 550-563. |
[31] | YUAN J , ZHENG Y , ZHANG C Y ,et al. T-drive: driving directions based on taxi trajectories[C]// The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2010: 99-108. |
[32] | HAKLAY M , WEBER P . OpenStreetMap:user-generated street maps[J]. IEEE Pervasive Computing, 2008,7(4): 12-18. |
[33] | LI Z H , WANG J J , HAN J W . Mining event periodicity from incomplete observations[C]// The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2012: 444-452. |
[34] | LI Z H , WANG J J , HAN J W . ePeriodicity:mining event periodicity from incomplete observations[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,27(5): 1219-1232. |
[35] | NOTO M , SATO H . A method for the shortest path search by extended Dijkstra algorithm[C]// The 2000 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2000: 2316-2320. |
[1] | 刘豆豆, 焦宝臣. 高校数据资产编目研究[J]. 大数据, 2023, 9(3): 71-84. |
[2] | 吴亚东, 陈家鸣, 罗焱, 王学锋, 黄德春, 倪超, 蓝集明, 李随群, 张巍瀚, 代唯. 彩灯元宇宙研究综述[J]. 大数据, 2023, 9(3): 97-113. |
[3] | 邓钇敏, 张旭龙, 司世景, 王健宗, 肖京. 虚拟人形象合成技术综述[J]. 大数据, 2023, 9(3): 114-139. |
[4] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[5] | 焦荟聪, 刘文菊, 王赜. 基于指数机制的轨迹差分隐私保护方法[J]. 大数据, 2023, 9(1): 141-152. |
[6] | 王子航, 禹向群, 斯洪标, 傅思敏, 张旭龙, 彭绍亮. 基于算力网络的元宇宙分层处理模型设计[J]. 大数据, 2023, 9(1): 51-62. |
[7] | 朱锐, 王宏志, 崔双双, 张恺欣, 燕钰. 面向元宇宙的云边端协同大数据管理[J]. 大数据, 2023, 9(1): 63-77. |
[8] | 韩立帆, 季紫荆, 陈子睿, 王鑫. 数字人文视域下面向历史古籍的信息抽取方法研究[J]. 大数据, 2022, 8(6): 26-39. |
[9] | 于亚秀, 李欣. 数字人文视域中的古籍文本标注方法研究——以MARKUS为例[J]. 大数据, 2022, 8(6): 15-25. |
[10] | 崔雨萌, 王靖亚, 闫尚义, 陶知众. 基于深度学习的警情记录关键信息自动抽取[J]. 大数据, 2022, 8(6): 127-142. |
[11] | 罗煜楚, 吴昊, 郭宇涵, 谭绍聪, 刘灿, 蒋瑞珂, 袁晓如. 数字人文中的可视化[J]. 大数据, 2022, 8(6): 74-93. |
[12] | 易杰, 曹腾飞, 黄明峰, 黄肖翰, 张子震. 基于时间编码LSTM的高校舆情热点趋势预测研究[J]. 大数据, 2022, 8(5): 124-138. |
[13] | 阮雯强, 徐铭辛, 涂新宇, 宋鲁杉, 韩伟力. 数据租赁——数据流通的新方式[J]. 大数据, 2022, 8(5): 3-11. |
[14] | 关海山, 郑玉龙, 魏笔凡, 张泽民, 岳浩, 师斌, 董博. 税收优惠政策关键要素抽取与可视化分析[J]. 大数据, 2022, 8(5): 106-123. |
[15] | 张宇奇, 黄晓雯, 桑基韬. 知识增强策略引导的交互式强化推荐系统[J]. 大数据, 2022, 8(5): 88-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|