大数据 ›› 2021, Vol. 7 ›› Issue (2): 32-60.doi: 10.11959/j.issn.2096-0271.2021013
王桂娟1,2, 周锐1, 蔡梦杰1, 汤勇2,3, 李茸茸1, 陈华容1,2, 吴亚东4
出版日期:
2021-03-15
发布日期:
2021-03-01
作者简介:
王桂娟(1981- ),女,西南科技大学信息工程学院博士生,西南科技大学计算机科学与技术学院教师,主要研究方向为可视化与可视化分析、自动可视化。基金资助:
Guijuan WANG1,2, Rui ZHOU1, Mengjie CAI1, Yong TANG2,3, Rongrong LI1, Huarong CHEN1,2, Yadong WU4
Online:
2021-03-15
Published:
2021-03-01
Supported by:
摘要:
随着移动电话的深入普及,大规模通信数据给人们提供了前所未有的观测城市微观结构和动态的机会,而如此大规模的高维异构时空关系数据又给高效数据解读带来了挑战。作为重要的大数据分析手段,可视化被越来越多地应用到这一领域。回顾近年来基于通信数据的城市可视分析研究工作,首先归纳了移动通信数据的主要来源、特征和常用的数据处理方法,然后从通信数据的内在对象“人”“通信设备”和“城市空间”3个方面阐述相应的可视化方法,并对基于通信数据的城市可视分析面向的任务、方法和特点进行了梳理,最后对基于通信数据的城市可视分析进行了展望。
中图分类号:
王桂娟, 周锐, 蔡梦杰, 汤勇, 李茸茸, 陈华容, 吴亚东. 基于移动通信数据的城市可视分析研究[J]. 大数据, 2021, 7(2): 32-60.
Guijuan WANG, Rui ZHOU, Mengjie CAI, Yong TANG, Rongrong LI, Huarong CHEN, Yadong WU. A survey on mobile communication data based urban visual analysis[J]. Big Data Research, 2021, 7(2): 32-60.
表2
城市对象可视化方法"
可视化对象 | 可视化焦点 | 数据特征 | 可视化方法 |
城市用户 | 用户通话模式 | 时间、空间、数量 | 折线图、日历图、径向图、地图、平行坐标、雷达图 |
城市用户画像 | 时间、空间、关系 | 甘特图、线图、词云、ego画像 | |
城市用户关系 | 关系、数量 | 甘特图、节点-连接图、矩阵图、星形图、ego网络、社会网络图 | |
通信设备 | 基站模式 | 时间、空间、数量 | 柱状图、像素矩阵、地图 |
基站覆盖范围 | 空间、关系 | 维诺图、饼图 | |
城市空间 | 城市空间热度 | 空间、数量 | 热力地图、渐变色地图 |
城市区域划分 | 空间、时间、数量 | 六边形分隔地图、正方形分隔地图、维诺图、节点-连接图 | |
城市区域动态 | 时间、空间、轨迹 | 时空立方体 |
表3
通信数据城市可视分析的典型工作"
城市可视分析类别 | 可视分析任务 | 分析方法 | 代表性工作 |
城市语义感知 | 城市人的语义感知 | 统计方法、多视图协同、相似性分析、相关性分析、群体状态立方体 | [18][28][42][46][50][57] |
城市空间语义感知 | 非负矩阵分解(nonnegative matrix factorization, NMF)、词嵌入、相似性计算、统计方法、聚类分析 | [13][19][48] | |
城市动态语义感知 | 时空相似性计算、POI向量、t-SNE降维、统计方法、蓝噪声采样、词嵌入、3D时空路径建模、哈希、聚类 | [14][17][27][53][58] | |
城市预测与异常分析 | 通信设备异常检测 | 统计方法、聚类、假设检验 | [6][42][59-60] |
社会群体异常检测 | 社区发现算法、空间概率密度、分类算法、ego网络 | [28][34][61] | |
社会事件异常检测 | 聚类、相似性计算、预测算法、纯可视分析 | [5][7][62] | |
城市资源优化 | 基站和通信设施优化 | MuLSTM预测、聚类、统计方法 | [6][16][63] |
城市交通设施优化 | K-means、DBSCAN、OD流聚合、统计方法 | [1][9][64] | |
城市配套资源优化 | 统计方法、机器学习SVM、决策树 | [65-67] |
[1] | LORENZO G D , SBODIO M , CALABRESE F ,et al. AllAboard:visual exploration of cellphone mobility data to optimise public transport[J]. IEEE Transactions on Visualization and Computer Graphics, 2016,22(2): 1036-1050. |
[2] | International Telecommunication Union. Measuring digital development:facts and figures 2020[Z]. 2020. |
[3] | ZHENG Y X , WU W C , CHEN Y Z ,et al. Visual analytics in urban computing:an overview[J]. IEEE Transactions on Big Data, 2016,2(3): 276-296. |
[4] | 张平文, 鄂维南, 袁晓如 ,等. 大数据分析与应用技术创新平台[J]. 大数据, 2018,4(4): 86-93. |
ZHANG P W , E W N , YUAN X R ,et al. Big data analysis and application technology innovation platform[J]. Big Data Research, 2018,4(4): 86-93. | |
[5] | SAGL G , LOIDL M , BEINAT E ,et al. A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic[J]. International Journal of GeoInformation, 2012,1(3): 256-271. |
[6] | JIANG H Y , TANG K , ZHAO W X ,et al. Aureole:a multi-perspective visual analytics approach for green cellular networks[J]. Journal of Visualization, 2018,21(3): 485-494. |
[7] | DONG Y X , PINELLI F , GKOUFAS Y ,et al. Inferring u n usual crowd events from mobile phone call detail records[C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Heidelberg:Springer, 2015: 474-492. |
[8] | ANDRIENKO G , ANDRIENKO N , FUCHS G . Multi-perspective analysis of mobile phone call data records:a visual analytics approach[Z]. 2015. |
[9] | MAI W M , XIE S H , CHEN X . Travel time estimation and urban key routes analysis based on call detail records data:a case study of Guangzhou City[C]// International Conference on Machine Learning and Intelligent Communications. Heidelberg:Springer, 2019: 659-676. |
[10] | 李艳妮, 敖成凤, 吴亚东 ,等. 基于移动通讯数据的用户行为可视分析[J]. 西南科技大学学报, 2017,32(4): 60-67. |
LI Y N , AO C F , WU Y D ,et al. Visual analysis of user behavior based on the mobile phone data[J]. Journal of Southwest University of Science and Technology, 2017,32(4): 60-67. | |
[11] | 黄文彬, 徐山川, 马龙 ,等. 利用通信数据的移动用户行为分析[J]. 现代图书情报技术, 2015(5): 80-87. |
HUANG W B , XU S C , MA L ,et al. Analysis of mobile user behaviors with telecommunication data[J]. New Technology of Library and Information Service, 2015(5): 80-87. | |
[12] | 向峰 . 基于移动网络数据的用户行为与城市感知研究[D]. 武汉:华中科技大学, 2014. |
XIANG F . Research on behavior analysis and urban sensing based on mobile network data[D]. Wuhan:Huazhong University of Science and Technology, 2014. | |
[13] | LI Z H , ZHU M F , HUANG Z S ,et al. Trajectory2V ec:a visual analytics approach for urban mobility patterns based on mobile phone data[J]. Journal of Computer-Aided Design and Computer Graphics, 2018,30(1): 68. |
[14] | WANG F , CHEN W , ZHAO Y ,et al. Adaptively exploring population mobility patterns in flow visualization[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(8): 2250-2259. |
[15] | ZHANG S H , YIN D D , ZHANG Y Q ,et al. Computing on base station behavior using Erlang measurement and call detail record[J]. IEEE Transactions on Emerging Topics in Computing, 2017,3(3): 444-453. |
[16] | CHEN L B , YANG D Q , ZHANG D Q ,et al. Deep mobile traffic forecast and complementary base station clustering for C-RAN optimization[J]. Journal of Network and Computer Applications, 2018,121(11): 59-69. |
[17] | YADAV K , KUMAR A , BHARATI A ,et al. Characterizing mobility patterns of people in developing countries using their mobile phone data[C]// The 6th International Conference on Communication Systems and Networks. Piscataway:IEEE Press, 2014: 1-8. |
[18] | SLINGSBY A , BEECHAM R , WOOD J . Visual analysis of social networks in space and time using smartphone logs[M]. Amsterdam: Elsevier Science Publishers B.V., 2013. |
[19] | LIU C F , LIU C , LIU F Q ,et al. Clustering a nalysis of urban fabric detection based on mobile traffic data[J]. Journal of Physics:Conference Series, 2020,1453(1): 012158. |
[20] | 牛国庄 . 基于用户行为的无线网络功 能扩展方法研究[D]. 保定:华北电力大学, 2014. |
NIU G Z . Research on wireless network communication function extension methods based on the analysis of user behavior[D]. Baoding:North China Electric Power University, 2014. | |
[21] | 黄诗瑶 . 聚类 分析在移动通信用户行为分析中的研究与应用[D]. 广州:广东工业大学, 2013. |
HUANG S Y . The research and application of clustering analysis in mobile user behavior analysis[D]. Guangzhou:Guangdong University of Technology, 2013. | |
[22] | 彭燕妮, 樊晓平, 赵颖 ,等. 时间事件序列数据可视化综述[J]. 计算机辅助设计与图形学学报, 2019(10): 1698-1710. |
PENG Y N , FAN X P , ZHAO Y ,et al. A survey of visualization of temporal event sequence data[J]. Journal of ComputerAided Design & Computer Graphics, 2019(10): 1698-1710. | |
[23] | 周志光, 石晨, 史林松 ,等. 地理空间数据可视分析综述[J]. 计算机辅助设计与图形学学报, 2018,30(5): 747-763. |
ZHOU Z G , SHI C , SHI L S ,et al. A survey on the visual analytics of geospatial data[J]. Computer-Aided Design &Computer Graphics, 2018,30(5): 747-763. | |
[24] | 王祖超, 袁晓如 . 轨迹数据可视分析研究[J]. 计算机辅助设计与图形学学报, 2015(1): 9-25. |
WANG Z C , YUAN X R . Visual analysis of trajectory data[J]. Computer-Aided Design& Computer Graphics, 2015(1): 9-25. | |
[25] | SHEN Z Q , MA K L . MobiVis:a visualization system for exploring mobile data[C]// 2008 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2008. |
[26] | 蒋宏宇, 吴亚东, 赵韦鑫 ,等. 面向用户行为理解的移动通讯数据可视分析[J]. 浙江大学学报(理学版), 2018,45(1): 40-46. |
JIANG H Y , WU Y D , ZHAO W X ,et al. Mobile data visual analysis for human activity understanding[J]. Journal of Zhejiang University(Science Edition), 2018,45(1): 40-46. | |
[27] | PU J S , XU P P , QU H M ,et al. Visual anal y sis of people's mobility pattern from mobile phone data[C]// The 2011 International Symposium on Visual Information Communication. New York:ACM Press, 2011: 1-10. |
[28] | JIANG H Y , WU Y D , ZHANG Y ,et al. From social community to spatio-temporal information:a new method for mobile data exploration[J]. Journal of Visual Languages& Computing, 2017,41(8): 1-9. |
[29] | 王峰, 钟宝荣, 余伟 ,等. 基于用户角色与城市地域 结构的互推断模型[J]. 计算机科学与探索, 2016,10(12): 1662-1672. |
WANG F , ZHONG B R , YU W ,et al. Mutual inference model based on user roles and urban functional zones[J]. Journal of Frontiers of Computer Science &Technology, 2016,10(12): 1662-1672. | |
[30] | 张海旭, 胡访宇, 赵家辉 . 基于话单数据的移动通信 用户画像研究[J]. 计算机系统应用, 2018,27(11): 271-277. |
ZHANG H X , HU F Y , ZHAO J H . Mobile communication user profiling based on call detail records[J]. Computer Systems& Applications, 2018,27(11): 271-277. | |
[31] | WANG Q , PU J S , GUO Y F ,et al. egoPortray:visual exploration of mobile communication signature from egocentric network perspective[C]// International Conference on Multimedia Modeling. Heidelberg:Springer, 2017: 649-661. |
[32] | RIEGLER V , WANG L N , DOPPLERHAIDER J ,et al. Who talks to whom:an evaluation of a call log visualization[J]. Journal of Visualization, 2021,24: 133-156. |
[33] | GOLBAN O , MARCU M , FUICU S ,et al. Solution for analyzing interpersonal relationships based on mobile communication history[C]// 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics. Piscataway:IEEE Press, 2015. |
[34] | HAN M , W ANG Q , WEI L R ,et al. egoStellar:Visual Analysis of Anomalous Communication Behaviors from Egocentric Perspective[C]// International Computer Symposium. Heidelberg:Springer, 2019: 280-290. |
[35] | ZHANG H Q , DANTU R . Discovery of social groups using call detail records[C]// The OTM Confederated International Workshops and Posters on the Move to Meaningful Internet Systems. Heidelberg:Springer, 2008: 489-498. |
[36] | 赵润乾, 吴渝, 陈昕 . 大规模社交网络社区发现及可视化算法[J]. 计算机辅助设计与图形学学报, 2017,29(2): 328-336. |
ZHAO R Q , WU Y , CHEN X . An algorithm for large-scale social network community detection and visualization[J]. Journal of Computer-Aided Design & Computer Graphics, 2017,29(2): 328-336. | |
[37] | 张政, 江南, 张俊 ,等. 空间位置耦合的地理社交网络可视化布局算法[J]. 计算机辅助设计与图形学学报, 2020,32(6): 865-873. |
ZHANG Z , JIANG N , ZHANG J ,et al. Geographical social network visualization layout algorithm based on spatial location coupling[J]. Journal of Computer-Aided Design & Computer Graphics, 2020,32(6): 865-873. | |
[38] | 任淑霞, 吴涛, 张书博 . 嵌入社区半径的力引导与径向树混合布局算法[J]. 四川大学学报:自然科学版, 2020,57(1): 73-81. |
REN S X , WU T , ZHANG S B . Community radius embedded in force-directed and radial tree hybrid layout algorithm[J]. Journal of Sichuan University(Natural Science Edition), 2020,57(1): 73-81. | |
[39] | 吴玲达, 张喜涛, 孟祥利 . 基于社团结构节点重要性的网络可视化压缩布局[J]. 北京航空航天大学学报, 2019,45(12): 2423-2430. |
WU L D , ZHANG X T , MENG X L . Compression layout for network visualization based on node importance for community structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019,45(12): 2423-2430. | |
[40] | 张喜涛, 吴玲达, 于少波 ,等. 面向多层网络可视化的多力导引节点自动布局算法[J]. 计算机辅助设计与图形学学报, 2019,31(4): 129-136. |
ZHANG X T , WU L D , YU S B ,et al. A multi-force directed layout algorithm for multilayer networks visualization[J]. Journal of Computer-Aided Design &Computer Graphics, 2019,31(4): 129-136. | |
[41] | 唐楷, 赵韦鑫, 蒋宏宇 ,等. 基于可视分析的伪基站活动特征分析方法[J]. 西南科技大学学报, 2018,33(2): 72-78. |
TANG K , ZHAO W X , JIANG H Y ,et al. A visual analytic method of activity characteristics exploration for pseudo base station[J]. Journal of Southwest University of Science and Technology, 2018,33(2): 72-78. | |
[42] | 蒲誉文, 胡海波, 何凌君 . 基于多用户垃圾短信数据 的伪基站活动轨迹可视分析方法[J]. 计算机应用, 2018,38(4): 1207-1212. |
PU Y W , HU H B , HE L J . Visual analytics on trajectory of pseudo base-stations based on SMS spam collected from mobilephone users[J]. Journal of Computer Applications, 2018,38(4): 1207-1212. | |
[43] | CHEN W , HUANG Z , WU F ,et al. VAUD:a visu al analysis approach for exploring spatio-temporal urban data[J]. IEEE Transactions on Visualization & Computer Graphics, 2018(99): 2636-2648. |
[44] | JO A , LE E S , KIM J . Gender gaps in the use of urban space in seoul:analyzing spatial patterns of temporary populations using mobile phone data[J]. Sustainability, 2020,12(16): 6481. |
[45] | CALABRESE F , DI LORENZO G , LIU L ,et al. Estimating origin-destination flows using mobile phone location data[J]. IEEE Pervasive Computing, 2011,10(4): 36-44. |
[46] | DEVILLE P , L INAR C , MARTIN S ,et al. Dynamic population mapping using mobile phone data[J]. Proceedings of the National Academy of Sciences, 2014,111(45): 15888-15893. |
[47] | ZHONG G , WAN X , ZHANG J ,et al. Characterizing passenger flow for a transportation hub based on mobile phone data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(6): 1507-1518. |
[48] | WU W C , ZHENG Y X , CAO N ,et al. MobiSeg:interactive region segmentation using heterogeneous mobility data[C]// 2017 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2017. |
[49] | PHITHAKKITNUKOON S , HORANONT T , LORENZO G D ,et al. Activity-aware map:identifying human daily activity pattern using mobile phone data[C]// The 1st International Conference on Human Behavior Understanding. Heidelberg:Springer, 2010. |
[50] | SHI L , JIANG T , ZHAO Y ,et al. UrbanFACET:visually profiling cities from mobile device recorded movement data of millions of city residents[J]. arXiv preprint,2017,arXiv:1707.04210. |
[51] | GRAELLS-GARRIDO E , GARCíA J . Visual exploration of urban dynamics using mobile data[C]// International Conference on Ubiquitous Computing and Ambient Intelligence. Heidelberg:Springer, 2015: 480-491. |
[52] | 李海生, 黄媛洁, 宋璇 ,等. 手机基站定位数据可视分析[J]. 大数据, 2017,3(1): 61-71. |
LI H S , HUANG Y J , SONG X ,et al. Visual analyses of mobile phone base station location data[J]. Big Data Research, 2017,3(1): 61-71. | |
[53] | KANG C G , GAO S , LIN X ,et al. Analyzing and geo-visualizing individual human mobility patterns using mobile call records[C]// 2010 18th International Conference on Geoinformatics. Piscataway:IEEE Press, 2010. |
[54] | SENARATN E H , MUELLER M , BEHRISCH M ,et al. Urban mobility analysis with mobile network data:a visual analytics approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,19(99): 1537-1546. |
[55] | CALABRESE F , FERRARI L , BLONDEL V D . Urban sensing using mobile phone network data:a survey of research[J]. ACM Computing Surveys, 2014,47(2): 1-20. |
[56] | FAN X , PENG Y , ZHAO Y ,et al. A personal visual analytics on smartphone usage data[J]. Journal of Visual Languages& Computing, 2017,41(8): 111-120. |
[57] | ZHENG Y , WU W , ZENG H ,et al. TelcoFlow:visual exploration of collective behaviors based on Telco data[C]// 2016 IEEE International Conference on Big Data. Piscataway:IEEE Press, 2016: 843-852. |
[58] | ZHOU Z G , MENG L H , TANG C ,et al. Visual abstraction of large scale geospatial origin-destination movement data[J]. IEEE Transactions on Visualization &Computer Graphics, 2018,25(1): 43-53. |
[59] | 徐江阳, 张慧军, 张小龙 . 基于恶意短信的伪基站行为可视分析[J]. 计算机工程与应用, 2019,55(18): 95-102. |
XU J Y , ZHANG H J , ZHANG X L . Visual analysis of pseudo base station behavior based on malicious SMS[J]. Computer Engineering and Applications, 2019,55(18): 95-102. | |
[60] | LEE W H , TSENG S S , WANG C H ,et al. Discovering the radio signal coverage hole and weak coverage area in mobile network by spatiotemporal data mining on location-based services[J]. Fundamenta Informaticae, 2010,98(1): 33-47. |
[61] | TRAAG V A , BROWET A , CALABRESE F ,et al. Social event detection in massive mobile phone data using probabilistic location inference[C]// IEEE 3rd International Conference on Privacy,Security,Risk and Trust. Piscataway:IEEE Press, 2012. |
[62] | ZHU Q , SUN L . Big data driven anomaly detection for cellular networks[J]. IEEE Access, 2020,8: 31398-31408. |
[63] | GHAHRAMANI M , ZHOU M C , HON C T . Mobile phone data analysis:a spatial exploration toward hotspot detection[J]. IEEE Transactions on Automation Science and Engineering, 2019,16(1): 351-362. |
[64] | ZHONG G , YIN T , ZHANG J ,et al. Characteristics analysis for travel behavior of transportation hub passengers using mobile phone data[J]. Transportation, 2019,46(5): 1713-1736. |
[65] | 翟书颖, 李茹, 李婧 ,等. 一种融合多源数据的连锁企业选址推荐方法[J]. 现代电子技术, 2019,42(22): 145-149. |
QU S Y , LI R , LI J ,et al. A method for chain enterprise site selection recommendation fusing multi-source data[J]. Modern Electronics Technique, 2019,42(22): 145-149. | |
[66] | 邓轲, 冯辉宗, 许国良 ,等. 基于多源大数据融合的银行网点选址方法[J]. 重庆邮电大学学报(自然科学版), 2020,32(4): 664-672. |
DENG K , FENG H Z , XU G L ,et al. Site selection method of banking facility location based on multi-source big data fusion[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020,32(4): 664-672. | |
[67] | KRISP J M . Planning fire and rescue services by visualizing mobile phone density[J]. Journal of Urban Technology, 2010,17(1): 61-69. |
[68] | LU M M , MENG D , PENG Y N ,et al. A visual ana lytics approach for exploring individual behaviors in smartphone usage data[C]// 2016 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2016. |
[69] | ALEXANDE R L , JIANG S , MURGA M ,et al. Origin-desti nation trips by purpose and time of day inferred from mobile phone data[J]. Transportation Research Part C Emerging Technologies, 2015,58(9): 240-250. |
[70] | WU W C , XU J Y , ZENG H P ,et al. TelCoVis:v isual exploration of cooccurrence in urban human mobility based on Telco data[J]. IEEE Transactions on Visualization and Computer Graphics, 2016,22(1): 935-944. |
[71] | BLONDEL V D , DECUYPER A , KRINGS G . A survey of results on mobile phone datasets analysis[J]. EPJ Data Science, 2015,4(1): 1-55. |
[1] | 张伶俐, 褚琦凯, 王桂娟, 张巍瀚, 蒲慧, 宋振金, 吴亚东. 文本情感可视分析技术及其在人文领域的应用[J]. 大数据, 2022, 8(6): 56-73. |
[2] | 解翠, 李明悝, 陈萍, 李孝天, 宋键, 董军宇, 赵佳萌. 大数据可视分析在海洋领域的应用[J]. 大数据, 2021, 7(2): 3-14. |
[3] | 曹安琪, 陈泓宇, 谢潇, 巫英才. 足球比赛数据可视分析[J]. 大数据, 2021, 7(2): 15-31. |
[4] | 陈谊, 孙梦, 武彩霞, 孙小然. 食品安全大数据可视化关联分析[J]. 大数据, 2021, 7(2): 61-77. |
[5] | 张平文, 鄂维南, 袁晓如, 傅毅明. 大数据分析与应用技术创新平台[J]. 大数据, 2018, 4(4): 86-93. |
[6] | 李海生, 黄媛洁, 宋璇, 杜军平, 陈国润, 丁富强. 手机基站定位数据可视分析[J]. 大数据, 2017, 3(1): 61-71. |
[7] | 陈宝权, 程章林. 大数据与智慧城市[J]. 大数据, 2015, 1(1): 68-77. |
[8] | 朱扬勇, 熊赟. 大数据是数据、技术,还是应用[J]. 大数据, 2015, 1(1): 78-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|