[1] |
国务院办公厅. 关于印发全国一体化政务大数据体系建设指南的通知[Z]. 2022.
|
|
General Office of the State Council. Notice on printing and issuing the guidelines for the construction of the national integrated government big data system[Z]. 2022.
|
[2] |
易成岐, 窦悦, 陈东 ,等. 全国一体化大数据中心协同创新体系:总体框架与战略价值[J]. 电子政务, 2021(6): 2-10.
|
|
YI C Q , DOU Y , CHEN D ,et al. Collaborative innovation system of national integrated big data center:overall framework and strategic value[J]. E-Government, 2021(6): 2-10.
|
[3] |
国务院. 关于印发促进大数据发展行动纲要的通知[Z]. 2015.
|
|
The State Council. Notice on issuing the platform for action to promote big data development[Z]. 2015.
|
[4] |
郑谐维 . 隐私计算在政务数据共享中的应用[J]. 上海信息化, 2022(4): 17-21.
|
|
ZHENG X W . Application of privacy computing in government data sharing[J]. Shanghai Informatization, 2022(4): 17-21.
|
[5] |
张聪丛, 郜颍颍, 赵畅 ,等. 开放政府数据共享与使用中的隐私保护问题研究:基于开放政府数据生命周期理论[J]. 电子政务, 2018(9): 24-36.
|
|
ZHANG C C , GAO Y Y , ZHAO C ,et al. Research on privacy protection in open government data sharing and use—based on open government data life cycle theory[J]. E-Government, 2018(9): 24-36.
|
[6] |
李瀛, 杨芮 . 我国政府数据开放的隐私保护困境及管理框架研究[J]. 情报杂志, 2023,42(1): 152-157.
|
|
LI Y , YANG R . Research on privacy protection dilemma and management framework of open government data in China[J]. Journal of Intelligence, 2023,42(1): 152-157.
|
[7] |
KONE?NY J , MCMAHAN H B , YU F X ,et al. Federated learning:strategies for improving communication efficiency[EB]. arXiv preprint,2016,arXiv:1610.05492.
|
[8] |
杨强 . AI与数据隐私保护:联邦学习的破解之道[J]. 信息安全研究, 2019,5(11): 961-965.
|
|
YANG Q . AI and data privacy protection:the way to federated learning[J]. Journal of Information Security Research, 2019,5(11): 961-965.
|
[9] |
YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19.
|
[10] |
LIU B Y , WANG L J , LIU M ,et al. Federated imitation learning:a privacy considered imitation learning framework for cloud robotic systems with heterogeneous sensor data[EB]. arXiv preprint,2019,arXiv:1909.00895.
|
[11] |
GONG Y , JIANG Z W , FENG Y F ,et al. EdgeRec:recommender system on edge in mobile Taobao[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York:ACM, 2020: 2477-2484.
|
[12] |
王海燕 . 抖音的算法推荐特点分析[J]. 新媒体研究, 2018,4(20): 21-22.
|
|
WANG H Y . Analysis of algorithm recommendation characteristics of Tiktok[J]. NewMedia Research, 2018,4(20): 21-22.
|
[13] |
李宗辰, 张颐, 叶东 ,等. 运用联邦学习技术推动公安大数据的融合运用[J]. 警察技术, 2021(6): 34-37.
|
|
LI Z C , ZHANG Y , YE D ,et al. Using federated learning technology to promote the integration and application of public security big data[J]. Police Technology, 2021(6): 34-37.
|
[14] |
钱学胜, 吴寰宇, 陈诚 ,等. 基于联邦学习的新冠肺炎疫情跨区域智慧防控技术:以上海市实践为例[J]. 科技导报, 2021,39(24): 96-107.
|
|
QIAN X S , WU H Y , CHEN C ,et al. Cross-region smart COVID-19 pandemic management and control based on federated learning:with Shanghai as an example[J]. Science & Technology Review, 2021,39(24): 96-107.
|
[15] |
SHI D Y , TONG Y X , ZHOU Z M ,et al. Learning to assign:towards fair task assignment in large-scale ride hailing[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &Data Mining. New York:ACM, 2021: 3549-3557.
|
[16] |
戴理朋, 杨鑫, 徐茹枝 . 联邦学习在电力数据分析中的应用及隐私保护研究[J]. 电力信息与通信技术, 2022,20(11): 47-56.
|
|
DAI L P , YANG X , XU R Z . Research on the application of federated learning in power data analysis and privacy protection[J]. Electric Power Information and Communication Technology, 2022,20(11): 47-56.
|
[17] |
刘隽良, 王月兵, 覃锦端 ,等. 数据安全实践指南[M]. 北京: 机械工业出版社, 2022: 42-82.
|
|
LIU J L , WANG Y B , QIN J D ,et al. Data security practice guide[M]. Beijing: China Machine Press, 2022: 42-82.
|
[18] |
高磊, 赵章界, 林野丽 ,等. 基于《数据安全法》的数据分类分级方法研究[J]. 信息安全研究, 2021,7(10): 933-940.
|
|
GAO L , ZHAO Z J , LIN Y L ,et al. Research on data classification and grading method based on data security law[J]. Journal of Information Security Research, 2021,7(10): 933-940.
|
[19] |
DE CRISTOFARO E , TSUDIK G . Practical private set intersection protocols with linear complexity[C]// SION R.International Conference on Financial Cryptography and Data Security. Berlin:Springer, 2010: 143-159.
|
[20] |
PINKAS B , SCHNEIDER T , ZOHNER M . Faster private set intersection based on OT extension[C]// Proceedings of the 23rd USENIX conference on Security Symposium. New York:ACM, 2014: 797-812.
|
[21] |
王力, 张秉晟, 陈超超 . 隐私保护机器学习[M]. 北京: 电子工业出版社, 2021:88.
|
|
WANG L , ZHANG B S , CHEN C C . Privacy protection machine learning[M]. Beijing: Electronic Industry Press, 2021:88.
|
[22] |
ADOMAVICIUS G , TUZHILIN A . Toward the next generation of recommender systems:a survey of the state-of-theart and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6): 734-749.
|
[23] |
朱智韬, 司世景, 王健宗 ,等. 联邦推荐系统综述[J]. 大数据, 2022,8(4): 105-132.
|
|
ZHU Z T , SI S J , WANG J Z ,et al. Survey on federated recommendation systems[J]. Big Data Research, 2022,8(4): 105-132.
|
[24] |
梁锋, 羊恩跃, 潘微科 ,等. 基于联邦学习的推荐系统综述[J]. 中国科学:信息科学, 2022,52(5): 713-741.
|
|
LIANG F , YANG E Y , PAN W K ,et al. Survey of recommender systems based on federated learning[J]. Scientia Sinica (Informationis), 2022,52(5): 713-741.
|
[25] |
ZHANG Z Q , CHEN C C , ZHOU J ,et al. An industrial-scale system for heterogeneous information card ranking in alipay[C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Cham:Springer, 2018: 713-724.
|
[26] |
CHEN C C , ZHENG X L , WANG Y ,et al. Context-aware collaborative topic regression with social matrix factorization for recommender systems[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014,28(1): 9-15.
|
[27] |
仇阿根, 张用川, 罗宁 ,等. 结合用户特征的政务服务协同过滤推荐方法[J]. 集成技术, 2023,12(1): 42-55.
|
|
QIU A G , ZHANG Y C , LUO N ,et al. Government service collaborative filtering recommendation method based on user characteristics[J]. Journal of Integration Technology, 2023,12(1): 42-55.
|
[28] |
王健宗, 孔令炜, 黄章成 ,等. 联邦学习算法综述[J]. 大数据, 2020,6(6): 64-82.
|
|
WANG J Z , KONG L W , HUANG Z C ,et al. Research review of federated learning algorithms[J]. Big Data Research, 2020,6(6): 64-82.
|
[29] |
刘俊旭, 孟小峰 . 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020,57(2): 346-362.
|
|
LIU J X , MENG X F . Survey on privacypreserving machine learning[J]. Journal of Computer Research and Development, 2020,57(2): 346-362.
|
[30] |
陈凯, 杨强 . 隐私计算[M]. 北京: 电子工业出版社, 2022:130.
|
|
CHEN K , YANG Q . Privacy computing[M]. Beijing: Electronic Industry Press, 2022:130.
|
[31] |
王腾, 霍峥, 黄亚鑫 ,等. 联邦学习中的隐私保护技术研究综述[J]. 计算机应用, 2023,43(2): 437-449.
|
|
WANG T , HUO Z , HUANG Y X ,et al. Review on privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023,43(2): 437-449.
|
[32] |
杨强, 童咏昕, 王晏晟 ,等. 群体智能中的联邦学习算法综述[J]. 智能科学与技术学报, 2022,4(1): 29-44.
|
|
YANG Q , TONG Y X , WANG Y S ,et al. A survey on federated learning in crowd intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2022,4(1): 29-44.
|
[33] |
邱鑫源, 叶泽聪, 崔翛龙 ,等. 联邦学习通信开销研究综述[J]. 计算机应用, 2022,42(2): 333-342.
|
|
QIU X Y , YE Z C , CUI X L ,et al. Survey of communication overhead of federated learning[J]. Journal of Computer Applications, 2022,42(2): 333-342.
|
[34] |
VARGHESE B , WANG N , BARBHUIYA S ,et al. Challenges and opportunities in edge computing[C]// Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud). Piscataway:IEEE Press, 2016: 20-26.
|
[35] |
HUANG W K , YE M , DU B . Learn from others and be yourself in heterogeneous federated learning[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2022: 10133-10143.
|
[36] |
VOGELS T , HE L , KOLOSKOVA A ,et al. RelaySum for decentralized deep learning on heterogeneous data[EB]. arXiv preprint,2021,arXiv:2110.04175.
|
[37] |
黄聿辰, 赵彦超, 郝江山 ,等. 面向数据异构的联邦学习性能优化研究[J]. 小型微型计算机系统, 2024,45(4): 777-783.
|
|
HUANG Y C , ZHAO Y C , HAO J S ,et al. Research on performance optimization of Federated learning for data heterogeneity[J]. Small Micro Computer Systems, 2024,45(4): 777-783.
|