大数据 ›› 2024, Vol. 10 ›› Issue (4): 34-50.doi: 10.11959/j.issn.2096-0271.2024048

• 专题:大数据与云存储 • 上一篇    

面向NVM的IoT时序数据多态协作压缩策略

蔡涛, 雷天乐, 牛德姣, 戴健飞, 黄泽宇, 倪强强   

  1. 江苏大学计算机科学与通信工程学院,江苏 镇江 212013
  • 出版日期:2024-07-01 发布日期:2024-07-01
  • 作者简介:蔡涛(1976- ),男,博士,江苏大学计算机科学与通信工程学院副教授,主要研究方向为网络存储系统与NVM。
    雷天乐(1999- ),男,江苏大学计算机科学与通信工程学院硕士生,主要研究方向为存储系统与NVM。
    牛德姣(1978- ),女,博士,江苏大学计算机科学与通信工程学院副教授,主要研究方向为存储系统与神经网络。
    戴健飞(1999- ),男,江苏大学计算机科学与通信工程学院硕士生,主要研究方向为存储系统与NVM。
    黄泽宇(1998- ),男,江苏大学计算机科学与通信工程学院硕士生,主要研究方向为存储系统与NVM。
    倪强强(1998- ),男,江苏大学计算机科学与通信工程学院硕士生,主要研究方向为存储系统与NVM。
  • 基金资助:
    国家重点研发计划项目(2019YFB1600500)

A polymorphic cooperative compression strategy for IoT time series data based on NVM

Tao CAI, Tianle LEI, Dejiao NIU, Jianfei DAI, Zeyu HUANG, Qiangqiang NI   

  1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
  • Online:2024-07-01 Published:2024-07-01
  • Supported by:
    The National Key Research and Development Program of China(2019YFB1600500)

摘要:

压缩策略是影响IoT时序数据存储系统性能的重要因素,而现有压缩策略缺乏针对NVM与IoT时序数据特性的优化机制。因此,提出了面向NVM的IoT时序数据多态协作压缩策略。首先,给出了IoT时序数据的组织结构。然后,针对IoT时序数据在一段时间内较稳定以及在用户态与内核态读写NVM适合的粒度差异较大的情况,设计了分层压缩策略。在用户态接收数据时,采用轻量级的数据压缩算法减少需存储的数据量,也减小了对IoT时序数据的存储效率的影响;针对IoT系统以查询和分析异常时序数据为主的特性,设计了深度压缩算法,在内核态对历史IoT时序数据进行深度压缩。其次,针对深度压缩历史IoT时序数据与存储新接收的IoT时序数据之间对NVM带宽的竞争,提出了写带宽保证的动态调整算法。最后,构建了面向NVM的IoT时序数据多态协作压缩策略原型PCCTSMS,并使用YCSB-TS工具进行测试与分析。实验结果表明,与InfluxDB、OpenTSDB、KairosDB和TVStore相比,PCCTSMS最高能提升161.3%的写吞吐率以及减少14.6%的存储空间。

关键词: 数据压缩, IoT, 时序数据, 非易失性内存, 存储系统

Abstract:

The compression strategy plays an important role in the performance of IoT time series data storage system.However, the current compression strategies can not adapt to the characteristics of NVM and IoT time series data.This paper proposes a polymorphic cooperative compression strategy for IoT time-series data based on NVM.Firstly, the overall structure of IoT time series data is given.Then, to address the consistent patterns in IoT time series data and the different granularity between user-space and kernel-space operations on NVM, a dual-compression strategy is devised.Initially, a lightweight compression method is applied directly as IoT time series data is received in user-space.This method efficiently reduces the volume of data for storage, while minimizing the impact on the timeliness of data storage.Moreover, a deep compression algorithm is designed for the kernel-space, primarily focusing on querying and analyzing anomalous time series data.Additionally, to address the competition for NVM bandwidth between deep compression and data storage, a dynamic adjustment algorithm that guarantees write bandwidth is proposed.Finally, a prototype of the polymorphic cooperative compression strategy is implemented and YCSB-TS is used to evaluate the results.The results show that the proposed method can effectively improve the write throughput of IoT time-series data by up to 161.3% and reduce the storage space by up to 14.6%, compared with InfluxDB, OpenTSDB, KairosDB and TVStore.

Key words: data compression, IoT, time series data, non-volatile memory, storage system

中图分类号: 

No Suggested Reading articles found!