[1] |
涂存超, 杨成, 刘知远 ,等. 网络表示学习综述[J]. 中国科学:信息科学, 2017,47(8): 980-996.
|
|
TU C C , YANG C , LIU Z Y ,et al. Network representation learning:an overview[J]. Scientia Sinica (Informationis), 2017,47(8): 980-996.
|
[2] |
戴筠 . 基于双曲空间图嵌入的科研热点预测[J]. 大数据, 2022,8(6): 94-104.
|
|
DAI J . Emerging scientific topic prediction based on Poincare graph embedding[J]. Big Data Research, 2022,8(6): 94-104.
|
[3] |
CAO S S , LU W , XU Q K . GraRep:learning graph representations with global structural information[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York:ACM, 2015: 891-900.
|
[4] |
PEROZZI B , AL-RFOU R , SKIENA S . DeepWalk:online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York:ACM, 2014: 701-710.
|
[5] |
WANG D X , CUI P , ZHU W W . Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016: 1225-1234.
|
[6] |
TU C C , ZHANG W C , LIU Z Y ,et al. Max-margin deepwalk:discriminative learning of network representation[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York:ACM, 2016: 3889-3895.
|
[7] |
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[EB]. arXiv preprint,2016,arXiv:1609.02907.
|
[8] |
YANG Z L , COHEN W W , SALAKHUTDINOV R . Revisiting semi-supervised learning with graph embeddings[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York:ACM, 2016: 40-48.
|
[9] |
FAN S H , WANG X , SHI C ,et al. Debiased graph neural networks with agnostic label selection bias[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 1-12.
|
[10] |
ZHANG H G , WANG Z S , LIU D R . A comprehensive review of stability analysis of continuous-time recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014,25(7): 1229-1262.
|
[11] |
CHEN L Y , LI S B , BAI Q ,et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote Sensing, 2021,13(22): 4712.
|
[12] |
ZHANG G J , LIU Y , JIN X N . A survey of autoencoder-based recommender systems[J]. Frontiers of Computer Science, 2020,14(2): 430-450.
|
[13] |
RUIZ L , GAMA F , RIBEIRO A . Gated graph recurrent neural networks[J]. IEEE Transactions on Signal Processing, 2020,68: 6303-6318.
|
[14] |
GAO H Y , WANG Z Y , JI S W . Largescale learnable graph convolutional networks[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2018: 1416-1424.
|
[15] |
WENG Z Q , ZHANG W Y , DOU W . Adversarial attention-based variational graph autoencoder[J]. IEEE Access, 2020,8: 152637-152645.
|
[16] |
CHENG D W , WANG X Y , ZHANG Y ,et al. Graph neural network for fraud detection via spatial-temporal attention[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(8): 3800-3813.
|
[17] |
ZHOU J , CUI G Q , HU S D ,et al. Graph neural networks:a review of methods and applications[J]. AI Open, 2020,1: 57-81.
|
[18] |
WU Z H , PAN S R , CHEN F W ,et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(1): 4-24.
|
[19] |
WU L R , LIN H T , TAN C ,et al. Selfsupervised learning on graphs:contrastive,generative,or predictive[J]. IEEE Transactions on Knowledge and Data Engineering, 2023,35(4): 4216-4235.
|
[20] |
PENG Z , HUANG W B , LUO M N ,et al. Graph representation learning via graphical mutual information maximization[C]// Proceedings of The Web Conference 2020. New York:ACM, 2020: 259-270.
|
[21] |
VELI?KOVI? P , FEDUS W , HAMILTON W L ,et al. Deep graph infomax[C]// Proceedings of the 7th International Conference on Learning Representations. arXiv preprint, 2019,arXiv:1809.10341.
|
[22] |
SUN F , HOFFMANN J , VERMA V ,et al. InfoGraph:unsupervised and semisupervised graph-level representation learning via mutual information maximization[EB]. arXiv preprint,2019,arXiv:1908.01000.
|
[23] |
BELGHAZI M I , BARATIN A , RAJESWAR S ,et al. MINE:mutual information neural estimation[EB]. arXiv preprint,2018,arXiv:1801.04062.
|
[24] |
HJELM R D , FEDOROV A , LAVOIEMARCHILDON S ,et al. Learning deep representations by mutual information estimation and maximization[EB]. arXiv preprint,2018,arXiv:1808.06670.
|
[25] |
QIN Z , KIM D , GEDEON T ,et al. Rethinking softmax with cross-entropy:neural network classifier as mutual information estimator[EB]. arXiv preprint,2018,arXiv:1911.10688.
|
[26] |
HU Y , YOU H X , WANG Z C ,et al. Graph-MLP:node classification without message passing in graph[EB]. arXiv preprint,2021,arXiv:2106.04051.
|
[27] |
XU B B , SHEN H W , CAO Q ,et al. Graph wavelet neural network[EB]. arXiv preprint,2019,arXiv:1904.07785.
|
[28] |
KANG Z , LIN Z P , ZHU X F ,et al. Structured graph learning for scalable subspace clustering:from single view to multiview[J]. IEEE Transactions on Cybernetics, 2022,52(9): 8976-8986.
|