[1] |
WANG H Z , WU Q Y , WANG H N . Factorization bandits for interactive recommendation[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2017: 2695-2702.
|
[2] |
MAHMOOD T , RICCI F . Learning and adaptivity in interactive recommender systems[C]// Proceedings of the 9th International Conference on Electronic Commerce. New York:ACM Press, 2007: 75-84.
|
[3] |
ZHAO X Y , ZHANG L , DING Z Y ,et al. Recommendations with negative feedback via pairwise deep reinforcement learning[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 2018: 1040-1048.
|
[4] |
ZHOU S J , DAI X Y , CHEN H K ,et al. Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2020: 179-188.
|
[5] |
WANG P F , FAN Y , XIA L ,et al. KERL:a knowledge-guided reinforcement learning model for sequential recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2020: 209-218.
|
[6] |
GOLDBERG D , NICHOLS D , OKI B M ,et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12): 61-70.
|
[7] |
RENDLE S , . Factorization machines[C]// Proceedings of 2010 IEEE International Conference on Data Mining. Piscataway:IEEE Press, 2010: 995-1000.
|
[8] |
HIDASI B , KARATZOGLOU A , BALTRUNAS L ,et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint,2015,arXiv:1511.06939.
|
[9] |
ZHOU G R , ZHU X Q , SONG C R ,et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 2018: 1059-1068.
|
[10] |
CHEN H K , DAI X Y , CAI H ,et al. Large-scale interactive recommendation with tree-structured policy gradient[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019: 3312-3320.
|
[11] |
ZHENG G J , ZHANG F Z , ZHENG Z H ,et al. DRN:a deep reinforcement learning framework for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference.[S.l.:s.n.], 2018: 167-176.
|
[12] |
ZOU L X , XIA L , DING Z Y ,et al. Reinforcement learning to optimize longterm user engagement in recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 2019: 2810-2818.
|
[13] |
DULAC-ARNOLD G , EVANS R , SUNEHAG P ,et al. Reinforcement learning in large discrete action spaces[J]. arXiv preprint,2015,arXiv:1512.07679.
|
[14] |
XIAN Y K , FU Z H , MUTHUKRISHNAN S ,et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2019: 285-294.
|
[15] |
HASSELT H V , GUEZ A , SILVER D . Deep reinforcement learning with double Q-learning[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2016.
|
[16] |
KOREN Y , BELL R , VOLINSKY C . Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8): 30-37.
|
[17] |
DAVIES D L , BOULDIN D W . A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979,PAMI-1(2): 224-227.
|