大数据 ›› 2022, Vol. 8 ›› Issue (5): 88-105.doi: 10.11959/j.issn.2096-0271.2022033

• 研究 • 上一篇    下一篇

知识增强策略引导的交互式强化推荐系统

张宇奇1,2, 黄晓雯1,2, 桑基韬1,2   

  1. 1 北京交通大学计算机与信息技术学院,北京 100044
    2 交通数据分析与挖掘北京市重点实验室,北京 100044
  • 出版日期:2022-09-15 发布日期:2022-09-01
  • 作者简介:张宇奇(1997- ),男,北京交通大学计算机与信息技术学院硕士生,主要研究方向为强化学习、推荐系统等
    黄晓雯(1993- ),女,博士,北京交通大学计算机与信息技术学院讲师,主要研究方向为多媒体计算、数据挖掘、用户建模、推荐系统等,在国内外学术会议/期刊上发表学术论文10余篇
    桑基韬(1985- ),男,博士,北京交通大学计算机与信息技术学院教授。2017年入选北京交通大学“卓越百人”计划。曾获中国电子学会科学技术奖自然科学一等奖、北京市科学技术奖、中国科学院院长特别奖、ACM中国新星奖等。主要研究方向为社会多媒体计算、多源数据挖掘、可信赖机器学习等。作为负责人先后主持国家自然科学基金重点项目、国家重点研发计划课题、北京市杰出青年科学基金等多个项目
  • 基金资助:
    中央高校基本科研专项资金资助项目(2021RC217)

Knowledge-enhanced policy-guided interactive reinforcement recommendation system

Yuqi ZHANG1,2, Xiaowen HUANG1,2, Jitao SANG1,2   

  1. 1 School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
    2 Beijing Key Lab of Traffic Data Analysis and Mining, Beijing 100044, China
  • Online:2022-09-15 Published:2022-09-01
  • Supported by:
    The Fundamental Research Funds for the Central Universities(2021RC217)

摘要:

推荐系统是解决社会媒体信息过载问题的重要手段。为了解决传统推荐系统无法优化用户长期体验的问题,研究人员提出了交互式推荐系统,并尝试使用深度强化学习优化推荐策略。但是,强化推荐算法面临反馈稀疏、从零学习影响用户体验、物品空间大等问题。为了解决上述问题,提出一种改进的知识增强策略引导的交互式强化推荐模型KGP-DQN。该模型构建行为知识图谱表示模块,将用户历史行为和知识图谱结合,解决反馈稀疏问题;构建策略初始化模块,根据用户历史行为为强化推荐系统提供初始化策略,解决从零学习影响用户体验的问题;构建候选集筛选模块,根据行为知识图谱上的物品表示进行动态聚类,从而减少物品空间,解决动作空间大的问题。在3个真实数据集上进行了实验,实验结果表明,KGP-DQN可以快速有效地对强化推荐系统进行训练,其在3个数据集上的推荐准确率均超过80%。

关键词: 交互式推荐系统, 深度强化学习, 知识图谱, 策略初始化, 候选集筛选

Abstract:

The recommendation system is an important means to solve the problem of information overload in social media.To solve the problem that traditional recommendation systems cannot optimize the longterm user experience, researchers have proposed the interactive recommendation system and tried to use deep reinforcement learning to optimize the strategy of recommendation.However, the reinforcement recommendation algorithm faces problems such as sparse feedback, learning from zero which damages the user experience, and large item space.To solve the above problems, an improved interactive reinforcement recommendation model KGP-DQN was proposed.The model constructed a behavioral knowledge graph representation module, which combines user historical behavior and knowledge graph to solve the problem of sparse feedback.The model constructed a strategy initialization module to provide an initialization strategy for the reinforcement recommendation system based on user historical behaviors to solve the problem of learning from zero.The model constructed the candidate select module which creates candidates by dynamic clustering based on the item representation on the behavioral knowledge graph to solve the problem of large action space.The experiments were conducted on three real-world datasets.The experimental results show that the KGP-DQN method can quickly and effectively train the reinforcement recommendation system and its recommendation accuracy on three datasets is more than 80%.

Key words: interactive recommendation system, deep reinforcement learning, knowledge graph, policy initialization, candidate select

中图分类号: 

No Suggested Reading articles found!