[1] |
曾春, 邢春晓, 周立柱 . 个性化服务技术综述. 软件学报 2002(10): 1952~1961.
|
|
Zeng C , Xing C X , Zhou L Z . A survey of personalization technology. Journal of Software, 2014(10): 1952~1961.
|
[2] |
Bell R M , Koren Y . Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newsletter, 2007,9(2): 75~79
|
[3] |
Rendle S . Factorization machines with libFM. ACM Transactions on Intelligent Systems & Technology, 2012,3(3): 451~458
|
[4] |
Su X , Khoshgoftaar T M . A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009: 421~425
|
[5] |
Chee S H S , Han J , Wang K . Rectree: an efficient collaborative filtering method. Proceedings of Data Warehousing and Knowledge Discovery: Third International Conference,Munich,Germany, 2001
|
[6] |
Connor M , Herlocker J . Clustering items for collaborative filtering. Proceedings of ACM SIGIR Workshop on Recommender Systems,New Orleans,Louisiana,USA , 2001
|
[7] |
Ungar L H , Foster D P . Clustering methods for collaborative filtering. Proceedings of AAAI Workshop on Recommendation Systems,Madison,Wisconsin,USA, 1998
|
[8] |
Miyahara K , Pazzani M J . Collaborative filtering with the simple bayesian classifier. Proceedings of the 6th Pacific Rim International Conference on Artificial Intelligence,Melbourne,Australia, 2000: 679~689
|
[9] |
Miyahara K , Pazzani M J . Improvement of collaborative filtering with the simple bayesian classifier. IPSJ Journal, 2002,43(11): 3429~3437
|
[10] |
Vucetic S , Obradovic Z . Collaborative filtering using a regression-based approach. Knowledge and Information Systems, 2005,7(1): 1~22
|
[11] |
Paterek A . Improving regularized singular value decomposition for collaborative filtering. Statistics, 2007: 2~5
|
[12] |
Koren Y . Factorization meets the neighborhood: a multifaceted collaborative filtering model. Proceedings of the 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,Las Vegas,Nevada,USA, 2008: 426~434
|
[13] |
Lee D , Seung H . Algorithms for non-negative matrix factorization. Proceedings of Neural Information Processing Systems,Denver,Colorado,USA, 2000
|
[14] |
Sun J T , Zeng H J , Liu H , et al. CubeSVD:a novel approach to personalized Web search. Proceedings of the 14th International Conference on World Wide Web,Chiba,Japan, 2005:382~390
|
[15] |
Steffen R , Leandro B M , Alexandros N , et al. Learning optimal ranking with tensor factorization for tag recommendation. Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,Paris,France, 2009:727~736
|
[16] |
王俞翔 . 面向大数据集的推荐系统研究(硕士学位论文). 秦皇岛:燕山大学, 2014
|
|
Wang Y X . Research on recommender system for big dataset (master dissertation). Qinhuangdao: Yanshan University, 2014
|
[17] |
黄宜华 . 大数据机器学习系统研究进展. 大数据, 2014004
|
|
Huang Y H . Research progress on big data machine learning system. Big Data Research, 2014004
|
[18] |
米可菲, 张勇, 邢春晓 等. 面向大数据的开源推荐系统分析. 计算机与数字工程, 2013,41(10): 1563~1566
|
|
Feben T , Zhang Y , Xing C X , et al. An analysis of open source recommender systems in the big data era.. Computer and Digital Engineering, 2013,41(10): 1563~1566
|
[19] |
孙远帅 . 基于大数据的推荐算法研究(硕士学位论文). 厦门:厦门大学, 2014
|
|
Sun Y S . Recommendation algorithms in the big data era (master dissertation). Xiamen: Xiamen University, 2014
|
[20] |
刘士琛 . 面向推荐系统的关键问题研究及应用(博士学位论文). 合肥:中国科学技术大学, 2014
|
|
Liu S C . Research on the key issues for the recommender systems (doctor dissertation). Hefei: University of Science and Technology of China, 2014
|