[1] |
SCHNAKERS C , VANHAUDENHUYSE A , GIACINO J ,et al. Diagnostic accuracy of the vegetative and minimally conscious state:clinical consensus versus standardized neurobehavioral assessment[J]. BMC Neurology, 2009,9(1).
|
[2] |
MULLENBACH J , WIEGREFFE S , DUKE J ,et al. Explainable prediction of medical codes from clinical text[C]// The 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.[S.l.:s.n]. 2018.
|
[3] |
JOHNSON A E W , POLLARD T J , SHEN L ,et al. MIMIC-III:a freely accessible critical care database[J]. Scientific Data, 2016(3).
|
[4] |
LARKEY L S , CROFT W B . Combining classifiers in text categorization[C]// The 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 1996: 289-297.
|
[5] |
FRANZ P , ZAISS A , SCHULZ S ,et al. Automated coding of diagnoses-three methods compared[C]// The AMIA Symposium.[S.l.:s.n]. 2000.
|
[6] |
PEROTTE A , PIVOVAROV R , NATARAJAN K ,et al. Diagnosis code assignment:models and evaluation metrics[J]. Journal of the American Medical Informatics Association, 2014,21(2): 231-237.
|
[7] |
KAVULURU R , HAN S , HARRIS D . Unsupervised extraction of diagnosis codes from EMRs using knowledgebased and extractive text summarization techniques[C]// 2013 Canadian Conference on Artificial Intelligence. Heidelberg:Springer-Verlag, 2013: 77-88.
|
[8] |
KAVULURU R , RIOS A , LU Y . An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records[J]. Artificial Intelligence in Medicine, 2015,65(2): 155-166.
|
[9] |
KOOPMAN B , ZUCCON G , NGUYEN A ,et al. Automatic ICD-10 classification of cancers from free-text death certificates[J]. International Journal of Medical Informatics, 2015,84(11): 956-965.
|
[10] |
SCHEURWEGS E , CULE B , LUYCKX K ,et al. Selecting relevant features from the electronic health record for clinical code prediction[J]. Journal of Biomedical Informatics, 2017,77: 92-103.
|
[11] |
SHICKEL B , TIGHE P J , BIHORAC A ,et al. Deep EHR:a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2017,22(5): 1589-1604.
|
[12] |
LIPTON Z C , KALE D C , ELKAN C ,et al. Learning to diagnose with LSTM recurrent neural networks[J]. arXiv preprint, 2015,arXiv:1511.03677v7.
|
[13] |
XU K , LAM M , PANG J ,et al. Multimodal machine learning for automated ICD coding[J]. arXiv preprint, 2018,arXiv:1810.13348v1.
|
[14] |
SHI H , XIE P , HU Z ,et al. Towards automated ICD coding using deep learning[J]. arXiv preprint, 2017,arXiv:1711.04075v3.
|
[15] |
XIE P , XING E . A neural architecture for automated ICD coding[C]// The 56th Annual Meeting of the Association for Computational Linguistics.[S.l.:s.n]. 2018: 1066-1077.
|
[16] |
DUARTE F , MARTINS B , PINTO C S ,et al. Deep neural models for ICD-10 coding of death certificates and autopsy reports in free-text[J]. Journal of Biomedical Informatics, 2018,80: 64-77.
|
[17] |
PRAKASH A , ZHAO S , HASAN S A ,et al. Condensed memory networks for clinical diagnostic inferencing[C]// The 31st AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2017: 3274-3280.
|
[18] |
BAUMEL T , NASSOUR-KASSIS J , COHEN R , ,et al. Multi-label classification of patient notes:case study on ICD code assignment[C]// The 32nd AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2018.
|
[19] |
ZENG M , LI M , FEI Z ,et al. Automatic ICD-9 coding via deep transfer learning[J]. Neurocomputing, 2019
|
[20] |
CAI H , ZHENG V W , CHANG K C C . A comprehensive survey of graph embedding:problems,techniques,and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(9): 1616-1637.
|
[21] |
BATTAGLIA P W , HAMRICK J B , BAPST V ,et al. Relational inductive biases,deep learning,and graph networks[J]. arXiv preprint, 2018,arXiv:1806.01261v3.
|
[22] |
BRUNA J , ZAREMBA W , SZLAM A ,et al. Spectral networks and locally connected networks on graphs[J]. arXiv preprint, 2013,arXiv:1312.6203v2.
|
[23] |
DEFFERRARD M , BRESSON X , VANDERGHEYNST P . Convolutional neural networks on graphs with fast localized spectral filtering[C]// Advances in Neural Information Processing Systems.[S.l.:s.n]. 2016.
|
[24] |
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[J]. arXiv preprint, 2016,arXiv:1609.02907v4.
|
[25] |
YAO L , MAO C , LUO Y . Graph convolutional networks for text classification[C]// The 33rd AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019.
|
[26] |
PENG H , LI J , HE Y ,et al. Largescale hierarchical text classification with recursively regularized deep graphCNN[C]// The 2018 World Wide Web Conference.[S.l.:s.n]. 2018: 1063-1072.
|
[27] |
RIOS A , KAVULURU R . Few-shot and zero-shot multi-label learning for structured label spaces[C]// The 2018 Conference on Empirical Methods in Natural Language Processing.[S.l.:s.n]. 2018: 3132-3142.
|
[28] |
WANG W , XU H , GAN Z ,et al. Graphdriven generative models for heterogeneous multi-task learning[C]// The 34th AAAI Conference on Artificial Intelligence. PaloAlto:AAAI Press, 2020.
|
[29] |
MIKOLOV T , CHEN K , CORRADO G ,et al. Efficient estimation of word representations in vector space[J]. arXiv preprint, 2013,arXiv:1301.3781v3.
|
[30] |
KIM Y . Convolutional neural networks for sentence classification[J]. arXiv preprint, 2014,arXiv:1408.5882v2.
|