[1] |
骆剑承, 胡晓东, 吴田军 ,等. 高分遥感驱动的精准土地利用与土地覆盖变化信息智能计算模型与方法研究[J]. 遥感学报, 2021,25(7): 1351-1373.
|
|
LUO J C , HU X D , WU T J ,et al. Research on intelligent calculation model and method of precision land use/cover change information driven by high-resolution remote sensing[J]. Journal of Remote Sensing, 2021,25(7): 1351-1373.
|
[2] |
王增茂, 杜博, 张良培 ,等. 基于纹理特征和形态学特征融合的高光谱影像分类法[J]. 光子学报, 2014,43(8).
|
|
WANG Z M , DU B , ZHANG L P ,et al. Based on texture feature and extend morphological profile fusion for hyperspectral image classification[J]. Acta PhotonicaSinica, 2014,43(8).
|
[3] |
王杰, 张松岩, 梁吉业 . 融合一致性正则与流形正则的半监督深度学习算法[J]. 大数据, 2022,8(3): 103-114.
|
|
WANG J , ZHANG S Y , LIANG J Y . A semi-supervised deep learning algorithm combining consistency regularization and manifold regularization[J]. Big Data Research, 2022,8(3): 103-114.
|
[4] |
SHAHSHAHANI B M , LANDGREBE D A . The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(5): 1087-1095.
|
[5] |
焦洪赞, 王少宇, 彭正洪 . 基于条件随机场的光谱相似性匹配高光谱遥感影像聚类方法[J]. 武汉大学学报(工学版), 2016,49(6): 937-943,948.
|
|
JIAO H Z , WANG S Y , PENG Z H . A spectral similarity matching classifier based on conditional random field for hyperspectral remote sensing imagery[J]. Engineering Journal of Wuhan University, 2016,49(6): 937-943,948.
|
[6] |
程志会, 谢福鼎 . 基于空间特征与纹理信息的高光谱图像半监督分类[J]. 测绘通报, 2016(12): 56-59,73.
|
|
CHENG Z H , XIE F D . Semi-supervised classification for hyperspectral image based on spatial features and texture information[J]. Bulletin of Surveying and Mapping, 2016(12): 56-59,73.
|
[7] |
何浩, 沈永林, 刘修国 ,等. 空间-光谱约束的图半监督高光谱影像分类算法[J]. 国土资源遥感, 2016,28(3): 31-36.
|
|
HE H , SHEN Y L , LIU X G ,et al. Spatialspectral constrained graph-based semisupervised classification for hyperspectral image[J]. Remote Sensing for Natural Resources, 2016,28(3): 31-36.
|
[8] |
王俊淑, 江南, 张国明 ,等. 高光谱遥感图像DE-self-training半监督分类算法[J]. 农业机械学报, 2015,46(5): 239-244.
|
|
WANG J S , JIANG N , ZHANG G M ,et al. Semi-supervised classification algorithm for hyperspectral remote sensing image based on DE-self-training[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(5): 239-244.
|
[9] |
王春阳 . 基于信息熵的自训练半监督高光谱遥感影像分类研究[D]. 焦作:河南理工大学, 2015.
|
|
WANG C Y . Research on self-training semi-supervised hyperspectral remote sensing image classification based on information entropy[D]. Jiaozuo:Henan Polytechnic University, 2015.
|
[10] |
ROMASZEWSKI M , GLOMB P , CHLOEW M . Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach[J]. ISPRS:Journal of Photogrammetry & Remote Sensing, 2016,121: 60-76.
|
[11] |
王立国, 杨月霜, 刘丹凤 . 基于改进三重训练算法的高光谱图像半监督分类[J]. 哈尔滨工程大学学报, 2016,37(6): 849-854.
|
|
WANG L G , YANG Y S , LIU D F . Semisupervised classification for hyperspectral image based on improved tri-training method[J]. Journal of Harbin Engineering University, 2016,37(6): 849-854.
|
[12] |
宋国娇 . 高光谱图像降维及半监督分类算法研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
|
|
SONG G J . Research on dimensionality reduction and semi-supervised classification algorithm of hyperspectral images[D]. Harbin:Harbin Engineering University, 2017.
|
[13] |
ZHOU Z H , LI M . Tri-training:exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(11): 1529-1541.
|
[14] |
GOLDMAN S , YAN Z . Enhancing supervised learning with unlabeled data[D]. Washington:Washington University, 2001.
|
[15] |
胡梦林 . 基于混沌杜鹃搜索算法的高光谱影像波段选择和半监督分类[D]. 武汉:武汉大学, 2018.
|
|
HU M L . Band selection and semi-supervised classification of hyperspectral images based on chaotic cuckoo search algorithm[D]. Wuhan:Wuhan University, 2018.
|
[16] |
HALL M A . Feature selection for discrete and numeric class machine learning[C]// Proceedings of the 17th International Conference on Machine Learning.[S.l.]: Morgan Kaufmann Publishers Inc, 2000: 584-596.
|
[17] |
HARALICK R M . Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979,67(5): 786-804.
|
[18] |
王立国, 马骏宇, 李阳 . 联合多种空间信息的高光谱半监督分类方法[J]. 哈尔滨工程大学学报, 2021,42(2): 280-285.
|
|
WANG L G , MA J Y , LI Y . Hyperspectral semi-supervised classification algorithm considering multiple spatial information[J]. Journal of Harbin Engineering University, 2021,42(2): 280-285.
|
[19] |
关世豪, 杨桄, 卢珊 ,等. 基于改进阶梯网络的高光谱半监督分类算法[J]. 激光与光电子学进展, 2021,58(24): 480-490.
|
|
GUAN S H , YANG G , LU S ,et al. Hyperspectral semi-supervised classification algorithm based on improved ladder network[J]. Laser &Optoelectronics Progress, 2021,58(24): 480-490.
|
[20] |
李彩虹, 赵祎霏 . 一种高光谱图像的半监督分类方法[J]. 测绘通报, 2018(2): 46-49.
|
|
LI C H , ZHAO Y F . A semi-supervised classification method for hyperspectral images[J]. Bulletin of Surveying and Mapping, 2018(2): 46-49.
|
[21] |
崔颖, 王雪婷, 陆忠军 ,等. 改进M-training算法的高光谱图像分类[J]. 哈尔滨工程大学学报, 2018,39(10): 1688-1694.
|
|
CUI Y , WANG X T , LU Z J ,et al. Hyperspectral image classification based on improved M-training algorithm[J]. Journal of Harbin Engineering University, 2018,39(10): 1688-1694.
|
[22] |
宋国娇 . 高光谱图像降维及半监督分类算法研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
|
|
SONG G J . Research on dimensionality reduction and semi-supervised classification algorithm of hyperspectral images[D]. Harbin:Harbin Engineering University, 2017.
|
[23] |
罗甫林 . 高光谱图像稀疏流形学习方法研究[J]. 测绘学报, 2017,46(3): 400.
|
|
LUO F L . Sparse manifold learning for hyperspectral imagery[J]. Acta Geodaetica et CartographicaSinica, 2017,46(3): 400.
|