[1] |
朱扬勇, 熊赟 . 大数据是数据、技术,还是应用. 大数据,2015007
|
|
Zhu Y Y , Xiong Y . Defining big data. Big Data Research,2015007
|
[2] |
Mark B . Gartner says solving ‘big data’ challenge involves more than just managing volumes of data. , 2011
|
[3] |
Xiong Y , Zhu Y Y . Mining peculiarity groups in day-by-day behavioral datasets. Proceedings of IEEE International Conference on Data Mining (ICDM’09), Miami,Florida,USA, 2009:578~587
|
[4] |
Xiong Y , Zhu Y Y , Yu Philip S , et al. Towards cohesive anomaly mining. Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI-13), Bellevue,Washington,USA, 2013
|
[5] |
朱扬勇, 熊赟 . 数据挖掘新任务:特异群组挖掘. 中国科技论文在线, , 2011
|
|
Zhu Y Y , Xiong Y . Peculiarity group mining:a new task in data mining. Science Paper Online, , 2011
|
[6] |
Jain A K . Data clustering:50 years beyond k-means. Pattern Recognition Letters, 2010,31(8):651~666
|
[7] |
Tan P N , Steinbach M , Kumar V . Introduction to Data Mining. Boston:Addison-Wesley, 2006
|
[8] |
Hawkins D . Identification of Outliers. London:Chapman and Hall, 1980:2~26
|
[9] |
Chandola V , Banerjee A , Kumar V . Anomaly detection:a survey. ACM Computing Surveys, 2009,41(3):1~58
|
[10] |
Papadimitriou S , Kitagawa H , Gibbons P B . Loci:fast outlier detection using the local correlation integral. Proceedings of the 19th International Conference on DataEngineering, Bangalore,India, 2003,315~327
|
[11] |
Liu F T , Ting K M , Zhou Z H . On detecting clustered anomalies using SCiForest. Proceedings of ECML/PKDD, Barcelona,Spain, 2010:274~290
|
[12] |
Dettling M , Buhlmann P . Supervised clustering of genes. Genome Biology, 2002,3(12):129~137
|
[13] |
Ester M , Kriegel H P , Sander J . A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, Portland,USA, 1996:226~231
|
[14] |
Bohm C , Plant C , Shao J . Clustering by synchronization. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington,USA, 2010:583~592
|
[15] |
Jiang D X , Pei J , Zhang A D . A general approach to mining quality pattern-based clusters from microarray data. Proceedings of DASFAA, Beijing,China, 2005:188~200
|
[16] |
Gupta G , Ghosh J . Bregman bubble clustering:a robust,scalable framework for locating multiple,dense regions in data. Proceedings of the 6th International Conference on Data Mining, Hong Kong,China, 2008:232~243
|
[17] |
Corral A , Manolopoulos Y , Theodoridis Y . Algorithms for processing k-closest-pair queries in spatial databases. Data & Knowledge Engineering Journal, 2004(49):67~104
|
[18] |
Tao Y F , Yi K , Sheng C , et al. Efficient and accurate nearest neighbor and closest pair search in high-dimensional spase. ACM Transactions on Database Systems, 2010,35(3):1~46
|
[19] |
Xiong Y , Zhu Y Y , Yu Philip S . Top-k similarity join in heterogeneous information networks. IEEE Transactions on Knowledge & Data Engineering, 2015,27(6):1710~1723
|
[20] |
Cheng J , Ke Y P , Fu A W . Finding maximal cliques in massive networks. IACM Transactions on Database Systems, 2011,36(4):1~34
|
[21] |
Tomita E , Tanaka A , Takahashi H . The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 2006,363(1):28~42
|
[22] |
赵迪 . 原博时基金经理马乐“老鼠仓”深度调查. 股市动态分析, 2013
|
|
Zhao D . The in-depth investigation of Ma Le “rat trading” at bosera select equity investment fund. Journal of Dynamic Analysis in Stock Market, 2013
|
[23] |
Leskovec J , Lang K J , Mahoney M W . Empirical comparison of algorithms for network community detection. Proceedings of the 19th International World Wide Web Conference, Raleigh,North Carolina,USA, 2010:631~640
|
[24] |
Feng J , Wang J , Li G . Trie-join:a trie-based method for efficient string similarity joins. The VLDB Journal, 2012,21(4):437~461
|
[26] |
Zheng G Y , Tu K , Yang Q . ITFP:an integrated platform of mammalian transcription factors. Bioinformatics, 2008,24(20):2416~2417
|
|
Hubert L , Arabie P . Comparing partitions. Journal of Classification, 1985,2(1):193~218
|