[1] |
秦永彬, 冯丽, 陈艳平 ,等. “智慧法院”数据融合分析与集成应用[J]. 大数据, 2019,5(3): 35-46.
|
|
QIN Y B , FENG L , CHEN Y P ,et al. “Intelligent Court” data fusion analysis and integrated application[J]. Big Data Research, 2019,5(3): 35-46.
|
[2] |
KORT F . Predicting supreme court decisions mathematically:a quantitative analysis of the “right to counsel” cases[J]. American Political Science Review, 1957,51(1): 1-12.
|
[3] |
NAGEL S S . Applying correlation analysis to case prediction[J]. Texas Law Review, 1963,42: 10061.
|
[4] |
LIN W C , KUO T T , CHANG T J ,et al. Exploiting machine learning models for Chinese legal documents labeling,case classification,and sentencing prediction[C]// Proceedings of the 24th Conference on Computational Linguistics and Speech Processing.[S.l.:s.n.], 2012:140.
|
[5] |
LIU Y H , CHEN Y L , HO W L . Predicting associated statutes for legal problems[J]. Information Processing & Management, 2015,51(1): 194-211.
|
[6] |
JIANG X , YE H , LUO Z ,et al. Interpretable rationale augmented charge prediction system[C]// Proceedings of the 27th International Conference on Computational Linguistics:System Demonstrations.[S.l.:s.n.], 2018: 146-151.
|
[7] |
KANG L Y , LIU J , LIU L Q ,et al. Creating auxiliary representations from charge definitions for criminal charge prediction[J]. arXiv preprint,2019,arXiv:1911.05202.
|
[8] |
YANG X T , SHI G Z , LOU J P ,et al. Interpretable charge prediction with multi-perspective jointly learning model[C]// Proceedings of 2019 IEEE 5th International Conference on Computer and Communications. Piscataway:IEEE Press, 2019: 1850-1855.
|
[9] |
刘宗林, 张梅山, 甄冉冉 ,等. 融入罪名关键词的法律判决预测多任务学习模型[J]. 清华大学学报(自然科学版), 2019,59(7): 497-504.
|
|
LIU Z L , ZHANG M S , ZHEN R R ,et al. Multi-task learning model for legal judgment predictions with charge keywords[J]. Journal of Tsinghua University (Science and Technology), 2019,59(7): 497-504.
|
[10] |
LUO B F , FENG Y S , XU J B ,et al. Learning to predict charges for criminal cases with legal basis[J]. arXiv preprint,2017,arXiv:1707.09168.
|
[11] |
HU Z K , LI X , TU C C ,et al. Few-shot charge prediction with discriminative legal attributes[C]// Proceedings of the 27th International Conference on Computational Linguistics.[S.l.:s.n.], 2018: 487-498.
|
[12] |
HE C Q , PENG L , LE Y Q ,et al. SECaps:a sequence enhanced capsule model for charge prediction[C]// Proceedings of the 2019 International Conference on Artificial Neural Networks. Cham:Springer, 2019: 227-239.
|
[13] |
敖绍林, 秦永彬, 黄瑞章 ,等. 基于卷积神经网络的辅助分案方法研究[J]. 大数据, 2021:已录用.
|
|
AO S L , QIN Y B , HUANG R Z ,et al. Research on auxiliary division method based on convolutional neural network[J]. Big Data Research, 2021:accepted.
|
[14] |
黄辉, 秦永彬, 陈艳平 ,等. 基于BERT阅读理解框架的司法要素抽取方法[J]. 大数据, 2021,7(6): 19-29.
|
|
HUANG H , QIN Y B , CHEN Y P ,et al. Legal element extraction method based on BERT reading comprehension framework[J]. Big Data Research, 2021,7(6): 19-29.
|
[15] |
张虎, 潘邦泽, 谭红叶 ,等. 基于法律裁判文书的法律判决预测[J]. 大数据, 2021,7(5): 164-175.
|
|
ZHANG H , PAN B Z , TAN H Y ,et al. Legal judgment prediction based on legal judgment documents[J]. Big Data Research, 2021,7(5): 164-175.
|
[16] |
YAO L , MAO C S , LUO Y . Graph convolutional networks for text classification[C]// Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2019,33: 7370-7377.
|
[17] |
ZHANG Y F , YU X L , CUI Z Y ,et al. Every document owns its structure:inductive text classification via graph neural networks[J]. arXiv preprint,2020,arXiv:2004.13826.
|
[18] |
HU L M , YANG T C , SHI C ,et al. Heterogeneous graph attention networks for semi-supervised short text classification[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2019: 4823-4832.
|
[19] |
HUANG L Z , MA D H , LI S J ,et al. Text level graph neural network for text classification[J]. arXiv preprint,2019,arXiv:1910.02356.
|
[20] |
XU N , WANG P H , CHEN L ,et al. Distinguish confusing law articles for legal judgment prediction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2020.
|
[21] |
DEVLIN J , CHANG M W , LEE K ,et al. BERT:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint,2018,arXiv:1810.04805.
|
[22] |
KIM Y . Convolutional neural networks for sentence classification[J]. arXiv preprint,2014,arXiv:1408.5882.
|
[23] |
李婷, 秦永彬, 黄瑞章 ,等. 基于神经网络的中文谓语动词识别研究[J]. 数据采集与处理, 2020,35(3): 582-590.
|
|
LI T , QIN Y B , HUANG R Z ,et al. Research on Chinese predicate verb recognition based on neural network[J]. Journal of Data Acquisition and Processing, 2020,35(3): 582-590.
|
[24] |
陈艳平, 冯丽, 秦永彬 ,等. 一种基于深度神经网络的句法要素识别方法[J]. 山东大学学报(工学版), 2020,50(2): 44-49.
|
|
CHEN Y P , FENG L , QIN Y B ,et al. A syntactic element recognition method based on deep neural network[J]. Journal of Shandong University (Engineering Science), 2020,50(2): 44-49.
|