[1] |
张蕾, 崔勇, 刘静 ,等. 机器学习在网络空间安全研究中的应用[J]. 计算机学报, 2018(9): 1943-1975.
|
|
ZHANG L , CUI Y , LIU J ,et al. Application of machine learning in cyberspace security research[J]. Journal of Computer, 2018(9): 1943-1975.
|
[2] |
王伟 . 基于深度学习的网络流量分类及异常检测方法研究[D]. 合肥:中国科学技术大学, 2018.
|
|
WANG W . Deep learning for network traffic classification and anomaly detection[D]. Hefei:University of Science and Technology of China, 2018
|
[3] |
ANDERSON B , MCGREW D , . Identifying encrypted malware traffic with contextual flow data[C]// ACM Workshop on Artificial Intelligence & Security. 2016: 36-41.
|
[4] |
ANDERSON B , MCGREW D . Machine learning for encrypted malware traffic classification:accounting for noisy labels and non-stationarity[C]// The 23rd ACM SIGKDD International Conference. 2017: 1725-1729.
|
[5] |
王琳, 封化民, 刘飚 ,等. 基于混合方法的SSL VPN加密流量识别研究[J]. 计算机应用与软件, 2019,36(2): 321-328.
|
|
WANG L , FENG H M , LIU B ,et al. SSL VPN encrypted traffic identification based on hybrid method[J]. Computer Applications and Software, 2019,36(2): 321-328.
|
[6] |
鲁刚, 郭荣华, 周颖 ,等. 恶意流量特征提取综述[J]. 信息网络安全, 2018,213(9): 7-15.
|
|
LU G , GUO R H , ZHOU Y ,et al. Review of malicious traffic feature extration[J]. Netinfo Security, 2018,213(9): 7-15.
|
[7] |
王可 . MD5算法研究[J]. 中文信息, 2002(2): 78-81.
|
|
WANG K . A research on MD5[J]. Chinese Information, 2002(2): 78-81.
|
[8] |
SHIRAVI A , SHIRACI H , TAVALLAEE M ,et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers & Security, 2012,31(3): 357-374.
|
[9] |
LASHKARI A H , DRAPER-GIL G , MAMUN M S I ,et al. Characterization of encrypted and VPN traffic using time-related features[C]// International Conference on Information Systems Security& Privacy. 2016, 407-414.
|
[10] |
朴杨, 鹤然, 任俊玲 . 基于Stacking的恶意网页集成检测方法[J]. 计算机应用, 2019,39(4): 153-160.
|
|
PIAO Y , HE R , REN J L . Malicious webpage integrated detection method based on stacking ensemble algorithm[J]. Journal of Computer Applications, 2019,39(4): 153-160.
|
[11] |
刘铭, 吴朝霞 . 支持向量机理论与应用[J]. 科技视界, 2018,245(23): 73-74.
|
|
LIU M , WU Z X . Theory and application of support vector machine[J]. Science and Technology Vision, 2018,245(23): 73-74.
|
[12] |
BREIMAN L . Random forest[J]. Machine Learning, 2001: 1-33.
|
[13] |
CHEN T , GUESTRIN C . XGBoost:a scalable tree boosting system[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
|