[1] |
Google android security 2018 report[EB].
|
[2] |
RASTOGI V , CHEN Y , JIANG X . Catch me if you can:evaluating android anti-malware against transformation attacks[J]. IEEE Transactions on Information Forensics and Security, 2013,9(1): 99-108.
|
[3] |
SELVARAJU R R , COGSWELL M , DAS A ,et al. Grad-cam:visual explanations from deep networks via gradient-based localization[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 618-626.
|
[4] |
ARP D , SPREITZENBARTH M , HUBNER M ,et al. Drebin:effective and explainable detection of android malware in your pocket[C]// NDSS. 2014 23-26.
|
[5] |
ZHANG M , DUAN Y , YIN H ,et al. Semantics-aware android malware classification using weighted contextual api dependency graphs[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 2014: 1105-1116.
|
[6] |
FENG Y , ANAND S , DILLIG I ,et al. Apposcopy:semantics-based detection of android malware through static analysis[C]// Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. 2014: 576-587.
|
[7] |
MARICONTI E , ONWUZURIKE L , ANDRIOTIS P ,et al. Mamadroid:detecting android malware by building markov chains of behavioral models[J]. arXiv preprint arXiv:1612.04433, 2016
|
[8] |
NATARAJ L , KARTHIKEYAN S , JACOB G ,et al. Malware images:visualization and automatic classification[C]// Proceedings of the 8th International Symposium on Visualization for Cyber Security. 2011:4.
|
[9] |
HSIEN-DE , HUANG T T , KAO H Y . R2-D2:color-inspired convolutional neural network (CNN)-based android malware detections[C]// 2018 IEEE International Conference on Big Data (Big Data). 2018: 2633-2642.
|
[10] |
[EB/OL]. .
|
[11] |
RASTHOFER S , ARZT S , BODDEN E . A machine-learning approach for classifying and categorizing android sources and sinks[C]// NDSS. 2014:1125.
|
[12] |
BLONDEL V D , GUILLAUME J L , LAMBIOTTE R ,et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics:Theory and Experiment, 2008(10):10008.
|
[13] |
WU H C , LUK R W P , WONG K F ,et al. Interpreting TF-IDF term weights as making relevance decisions[J]. ACM Transactions on Information Systems (TOIS), 2008,26(3):13.
|
[14] |
FAN M , LIU J , WANG W ,et al. Dapasa:detecting android piggybacked apps through sensitive subgraph analysis[J]. IEEE Transactions on Information Forensics and Security, 2017,12(8): 1772-1785.
|
[15] |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[C]// Advances in neural information processing systems. 2012: 1097-1105.
|
[16] |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014
|
[17] |
HE K , ZHANG X , REN S ,et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|