[1] |
LIU X , YU J , LV W ,et al. Network security situation:from awareness to awareness-control[J]. Journal of Network and Computer Applications, 2019,139: 15-30.
|
[2] |
WU J , OTA K , DONG M ,et al. Big data analysis-based security situational awareness for smart grid[J]. IEEE Transactions on Big Data, 2016,4(3): 408-417.
|
[3] |
LIANG W , LONG J , CHEN Z ,et al. A security situation prediction algorithm based on HMM in mobile network[J]. Wireless Communications & Mobile Computing, 2018,2018: 1-11.
|
[4] |
HU J , Ma D , LIU C ,et al. Network security situation prediction based on MR-SVM[J]. IEEE Access, 2019,7: 130937-130945.
|
[5] |
谢丽霞, 王亚超, 于巾博 . 基于神经网络的网络安全态势感知[J]. 清华大学学报(自然科学版), 2013,53(12): 1750-1760.
|
|
XIE L X , WANG Y C , YU J B . Network security situation awareness based on neural networks[J]. Journal of Tsinghua University(Science and Technology), 2013,53(12): 1750-1760.
|
[6] |
ZHANG H , HUANG Q , LI F ,et al. A network security situation prediction model based on wavelet neural network with optimized parameters[J]. Digital Communications and Networks, 2016,2(3): 139-144.
|
[7] |
XIAO P , XIAN M , WANG H . Network security situation prediction method based on MEA-BP[C]// 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT). IEEE, 2017: 1-5.
|
[8] |
杨宏宇, 张旭高 . 基于自修正系数修匀法的网络安全态势预测[J]. 通信学报, 2020,41(5): 196-204.
|
|
YANG H Y , ZHANG X G . Self-corrected coefficient smoothing method based network security situation prediction[J]. Journal on Communications, 2020,41(5): 196-204.
|
[9] |
张任川, 张玉臣, 刘璟 ,等. 应用改进卷积神经网络的网络安全态势预测方法[J]. 计算机工程与应用, 2019,55(6): 86-93.
|
|
ZHANG R C , ZHANG Y C , LIU J ,et al. Network security situation prediction method using improved convolution neural network[J]. Computer Engineering and Applications, 2019,55(6): 86-93.
|
[10] |
LI Y , LIU B , ZHANG L ,et al. Fast trajectory prediction method with attention enhanced SRU[J]. IEEE Access, 2020,8: 206614-206621.
|
[11] |
LUONG M T , PHAM H , MANNING C D . Effective approaches to attention-based neural machine translation[J]. arXiv preprint arXiv:1508.04025, 2015.
|
[12] |
丁华东, 许华虎, 段然 ,等. 基于贝叶斯方法的网络安全态势感知模型[J]. 计算机工程, 2020,46(6): 130-135.
|
|
DING H D , XU H H , DUAN R ,et al. Network security situation awareness model based on bayesian method[J]. Computer Engineering, 2020,46(6): 130-135.
|
[13] |
程家根 . 基于机器学习的网络安全态势感知模型研究与实现[D]. 南京邮电大学, 2020.
|
|
CHENG J G . Research and implementation of network security situation awareness model based on machine learning[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2020.
|
[14] |
CHERDANTSEVA Y , BURNAP P , BLYTH A ,et al. A review of cyber security risk assessment methods for SCADA systems[J]. Computers & security, 2016,56: 1-27.
|
[15] |
HUANG K , ZHOU C , TIAN Y C ,et al. Assessing the physical impact of cyberattacks on industrial cyber-physical systems[J]. IEEE Transactions on Industrial Electronics, 2018,65(10): 8153-8162.
|
[16] |
LEI T , ZHANG Y , WANG S I ,et al. Simple recurrent units for highly parallelizable recurrence[J]. arXiv preprint arXiv:1709.02755, 2017.
|
[17] |
ZILLY J G , SRIVASTAVA R K , KOUTNIK J ,et al. Recurrent highway networks[C]// International Conference on Machine Learning. 2017: 4189-4198.
|
[18] |
CNCERT. 2017年至2020年网络安全信息与动态周报[EB].
|
|
CNCERT. Network security information and trends weekly report from 2017 to 2020[EB].
|
[19] |
BOCK S , WEI? M ,, . A proof of local convergence for the Adam optimizer[C]// 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1-8.
|
[20] |
KHWAJA A , ZHANG X , ANPALAGAN A ,et al. Boosted neural networks for improved short-term electric load forecasting[J]. Electric Power Systems Research, 2017,143: 431-437.
|
[21] |
ZENG L , REN W , SHAN L J N . Attention-based bidirectional gated recurrent unit neural networks for well logs prediction and lithology identification[J]. Neuro Computing, 2020,414: 153-171.
|
[22] |
MUNKHDALAI L , MUNKHDALAI T , PARK K H ,et al. An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series[J]. IEEE Access, 2019,7: 99099-99114.
|