[1] |
GURUBARAN S . Cisco encrypted traffic analytics white paper[EB].
|
[2] |
SHEFFER Y , HOLZ R , SAINT-ANDRE P , . Summarizing known attacks on transport layer security (TLS) and datagram TLS (DTLS)[J]. Internet Engineering Task Force Request for Comments,2015, 7457.
|
[3] |
MCPHERSON J , MA K L , KRYSTOSK P ,et al. Portvis:a tool for port-based detection of security events[C]// Proceedings of the 2004 ACM workshop on Visualization and Data Mining for Computer Security. 2004: 73-81.
|
[4] |
FINSTERBUSCH M , RICHTER C , ROCHA E ,et al. A survey of payload-based traffic classification approaches[J]. IEEE Communications Surveys & Tutorials, 2013,16(2): 1135-1156.
|
[5] |
CAO Z , XIONG G , ZHAO Y ,et al. A survey on encrypted traffic classification[C]// International Conference on Applications and Techniques in Information Security. 2014: 73-81.
|
[6] |
FREIER A , KARLTON P , KOCHER P . The secure sockets layer (SSL) protocol version 3.0[R]. RFC 6101, 2011.
|
[7] |
RESCORLA E , DIERKS T . The transport layer security (TLS) protocol version 1.3[J]. 2018.
|
[8] |
M?LLER B , DUONG T , KOTOWICZ K . This POODLE bites:exploiting the SSL 3.0 fallback[J]. Security Advisory, 2014,21: 34-58.
|
[9] |
GLUCK Y , HARRIS N , PRADO A . BREACH:reviving the CRIME attack[J]. Unpublished manuscript, 2013.
|
[10] |
VANHOEF M , PIESSENS F . All your biases belong to us:Breaking RC4 in WPA-TKIP and TLS[C]// 24th USENIX Security Symposium {USENIX} Security. 2015: 97-112.
|
[11] |
KORCZY?SKI M , DUDA A . Markov chain fingerprinting to classify encrypted traffic[C]// IEEE INFOCOM 2014-IEEE Conference on Computer Communications. 2014: 781-789.
|
[12] |
SHEN M , WEI M , ZHU L ,et al. Classification of encrypted traffic with second-order markov chains and application attribute bigrams[J]. IEEE Transactions on Information Forensics and Security, 2017,12(8): 1830-1843.
|
[13] |
LIU C , HE L , XIONG G ,et al. Fs-net:a flow sequence network for encrypted traffic classification[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications. 2019: 1171-1179.
|
[14] |
RADFORD B J , APOLONIO L M , Trias A J ,et al. Network traffic anomaly detection using recurrent neural networks[J]. arXiv pre print arXiv:1803.10769, 2018.
|
[15] |
MIRSKY Y , DOITSHMAN T , ELOVICI Y ,et al. Kitsune:an ensemble of autoencoders for online network intrusion detection[J]. arXiv preprint arXiv:1802.09089, 2018.
|
[16] |
FU C , LI Q , SHEN M ,et al. Realtime robust malicious traffic detection via frequency domain analysis[C]// Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021: 3431-3446.
|
[17] |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780.
|
[18] |
SNELL J , SWERSKY K , ZEMEL R . Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 4080-4090.
|
[19] |
VAN DER MAATEN L , HINTON G . Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008,9(11).
|
[20] |
HOLMES A , KELLOGG M . Automating functional tests using selenium[C]// AGILE 2006 (AGILE'06). 2006.
|
[21] |
MERINO B . Instant traffic analysis with Tshark how-to[M]. Packt Publishing Ltd, 2013.
|
[22] |
PASZKE A , GROSS S , MASSA F ,et al. Pytorch:an imperative style,high-performance deep learning library[J]. Advances in neural Information Processing Systems, 2019,32: 8026-8037.
|
[23] |
PEDREGOSA F , VAROQUAUX G , GRAMFORT A ,et al. Scikit-learn:machine learning in Python[J]. The Journal of Machine Learning Research, 2011,12: 2825-2830.
|