网络与信息安全学报 ›› 2022, Vol. 8 ›› Issue (5): 1-25.doi: 10.11959/j.issn.2096-109x.2022063
• 综述 • 下一篇
夏毅, 兰明敬, 陈晓慧, 罗军勇, 周刚, 何鹏
修回日期:
2022-06-13
出版日期:
2022-10-15
发布日期:
2022-10-01
作者简介:
夏毅(1997- ),男,辽宁丹东人,信息工程大学硕士生,主要研究方向为知识图谱推理基金资助:
Yi XIA, Mingjng LAN, Xiaohui CHEN, Junyong LUO, Gang ZHOU, Peng HE
Revised:
2022-06-13
Online:
2022-10-15
Published:
2022-10-01
Supported by:
摘要:
近年来,以深度学习模型为基础的人工智能研究不断取得突破性进展,但其大多具有黑盒性,不利于人类认知推理过程,导致高性能的复杂算法、模型及系统普遍缺乏决策的透明度和可解释性。在国防、医疗、网络与信息安全等对可解释性要求严格的关键领域,推理方法的不可解释性对推理结果及相关回溯造成较大影响,因此,需要将可解释性融入这些算法和系统中,通过显式的可解释知识推理辅助相关预测任务,形成一个可靠的行为解释机制。知识图谱作为最新的知识表达方式之一,通过对语义网络进行建模,以结构化的形式描述客观世界中实体及关系,被广泛应用于知识推理。基于知识图谱的知识推理在离散符号表示的基础上,通过推理路径、逻辑规则等辅助手段,对推理过程进行解释,为实现可解释人工智能提供重要途径。针对可解释知识图谱推理这一领域进行了全面的综述。阐述了可解释人工智能和知识推理相关概念。详细介绍近年来可解释知识图谱推理方法的最新研究进展,从人工智能的3个研究范式角度出发,总结了不同的知识图谱推理方法。提出对可解释的知识图谱推理研究前景和未来研究方向。
中图分类号:
夏毅, 兰明敬, 陈晓慧, 罗军勇, 周刚, 何鹏. 可解释的知识图谱推理方法综述[J]. 网络与信息安全学报, 2022, 8(5): 1-25.
Yi XIA, Mingjng LAN, Xiaohui CHEN, Junyong LUO, Gang ZHOU, Peng HE. Survey on explainable knowledge graph reasoning methods[J]. Chinese Journal of Network and Information Security, 2022, 8(5): 1-25.
表1
符号主义中的可解释知识图谱推理方法Table 1 Explainable knowledge graph reasoning methods in symbolism"
分类 | 部分经典模型 | 推理特点推理准确性(MRR) | 推理准确性(Hit@3) | 解释形式 | 可解释的范围 | 可解释的产生方式 | 可解释的泛化性 | 下游场所适用性 | |
Pellet(2007)[ | |||||||||
基于本体的 | OP(2016)[ | 利用抽象化本体层 | 本体的演 | 全局 | 事前可 | 可靠性 | |||
知识推理 | JOIE(2019)[ | 面的频繁模式、约— | — | 绎关系 | 可解释 | 解释 | 模型无关 | 优先领域 | |
OntoED(2021)[ | 束或路径进行推理 | ||||||||
MLN(2006)[ | 0.098 | 0.103 | |||||||
基于逻辑规则 | AIME+(2015)[52 | 通过挖掘全局或局0.292 | 0.305 | 全局 | 事前可 | 可靠性 | |||
的知识推理 | AnyBURL(2020)[ | 部逻辑规则或特征0.346 | 0.367 | 逻辑规则 | 可解释 | 解释 | 模型无关 | 优先领域 | |
Rule-IC(2021)[ | 进行推理0.355 | 0.374 | |||||||
注:由于符号主义中基于本体的知识推理为概念层的推理,推理准确性不做比较。 |
表2
行为主义中的可解释知识图谱推理方法Table 2 Explainable knowledge graph reasoning methods in behaviorism"
分类 | 部分经典模型 | 推理特点 | 推理准确性(MRR) | 推理准确性(Hit@3) | 解释形式 | 可解释的范围 | 可解释的产生方式 | 可解释的泛化性 | 下游式场景适应性 |
PRA(2010)[ | 通过随机游走发现隐 | 0.098 | 0.197 | ||||||
基于随机 | SFE(2015)[ | 式的关联规则,但搜 | 0.232 | 0.307 | 计算推理路径 | ||||
游走的知 | TRWA(2018)[ | 索空间较大,计算效 | 0.359 | 0.359 | 特征的权重为 | 局部 | 事前 | 效率优先领 | |
识推理 | Attnpath(2019)[ | 率低 | 0.346 | 0.391 | 结果进行解释 | 可解释 | 可解释 | 模型无关 | 域 |
DeepPath(2018)[ | 缓解了基于随机游走 | 0.301 | 0.381 | 借助强化学习 | |||||
基于强化 | MINERVA(2018)[ | 搜索空间过大的问 | 0.298 | 0.389 | 的推理路径来 | 局部 | 事前 | 解释特定 | 效率优先领 |
学习的知 | MultiHop(2018)[ | 题,但黑盒模型的引 | 0.363 | 0.413 | 解释智能体的 | 可解释 | 可解释 | 于模型 | 域 |
识推理 | Ruleguider(2022)[ | 入导致可解释性下降 | 0.385 | 0.438 | 行为 |
表3
连接主义中的可解释知识图谱推理方法Table 3 Explainable knowledge graph reasoning methods in connectionism"
分类 | 部分经典模型 | 推理特点 | 推理准确性(MRR) | 推理准确性(MRR) | 解释形式 | 可解释的范围 | 可解释的产生方式 | 可解释的泛化性 | 下游场景适用性 |
基于平 | TransE(2013)[ | 0.326 | 0.363 | ||||||
移距离 | RotateE(2019)[ | 0.338 | 0.487 | 局部 | 事后 | 解释特定 | 效率 | ||
的模型 | DuelE(2021)[ | 利用知识图谱 | 0.492 | 0.423 | 可解释 | 可解释 | 于模型 | 优先领域 | |
MuRP(2020)[ | 表示模型,将实 | 0.418 | 0.447 | 关系模式、 | |||||
体和关系映射 | 逻辑操作、 | ||||||||
基于张 | RESCAL(2015)[ | 为低维向量,数 | 0.227 | 0.255 | 实体的层次 | ||||
量分解 | DisMult(2016)[ | 值化计算进行 | 0.312 | 0.263 | 关系 | 局部 | 事后 | 解释特定 | 效率 |
的模型 | ASNALOGY(2019)[ | 推理预测 | 0.356 | 0.275 | 可解释 | 可解释 | 于模型 | 优先领域 | |
TuckER(2020)[ | 0.409 | 0.356 |
表6
混合的可解释知识图谱推理方法Table 6 Hybrid explainable knowledge graph reasoning methods"
分类 | 部分经典模型 | 推理特点 | 推理准确性(MRR) | 推理准确性(Hit@3) | 解释形式 | 可解释的范围 | 可解释的产生方式 | 可解释的泛化性 | 下游场景适应性 |
KALE(2016)[ | 充分利用规则的准确 | 0.312 | 0.324 | ||||||
符号规则增强 | PlogicNet(2019)[ | 性高、可解释性强的优 | 0.332 | 0.369 | 逻辑规则 | 局部 | 事后 | 解释特定 | 效率优先 |
神经网络的知 | ExpressGNN(2020)[ | 势,提高神经网络推理 | 0.420 | 0.375 | 推理路径 | 可解释 | 可解释 | 于模型 | 领域 |
识推理 | UniKER(2021)[ | 的透明性及可靠性 | 0.522 | 0.507 | |||||
Neural LP(2017)[ | 充分利用神经网络鲁 | 0.237 | 0.306 | 关系模式、 | |||||
神经网络增强 | RLvLR(2019)[ | 棒性和效率上的优势, | 0.24 | 0.344 | 逻辑操作、 | 全局 | 事前 | 效率优先 | |
符号规则的知 | NLIL(2020)[ | 缓解数据噪声及搜索 | 0.26 | 0.359 | 实体的层 | 可解释 | 可解释 | 模型无关 | 领域 |
识推理 | RNNLogic(2021)[ | 空间大的问题 | 0.344 | 0.380 | 次关系 |
表7
可解释的知识推理方法及特点Table 7 Explainable knowledge reasoning methods and their characteristics"
分类 | 子分类 | 部分经典模型 | 推理特点 | 推理准确性(MRR) | 解释形式 | 可解释的范围 | 可解释的产生方法 | 可解释的泛化性 |
Pellet(2007)[ | ||||||||
基于本体的 | OP(2016)[ | 利用抽象化本体层面的 | 本体的演绎 | 全局可 | ||||
知识推理 | JOIE(2019)[ | 频繁模式、约束或路径 | — | 关系 | 解释 | 事前可解释 | 模型无关 | |
符号主义中的知识推理 | OntoED(2021)[ | 进行推理 | ||||||
MLN(2006)[ | 0.098 | |||||||
基于逻辑规则 | AIME+(2015)[ | 通过挖掘全局或局部逻 | 0.292 | 逻辑规则 | 全局可 | 事前可解释 | 模型无关 | |
的知识推理 | AnyBURL(2020)[ | 辑规则或特征进行推理 | 0.346 | 解释 | ||||
Rule-IC(2021)[ | 0.355 | |||||||
PRA(2010)[ | 0.098 | 计算推理路 | ||||||
基于随机游走 | SFE(2015)[ | 通过随机游走发现隐式 | 0.232 | 径特征的权 | 局部可 | 事前可解释 | 模型无关 | |
的知识推理 | TRWA(2018)[ | 的关联规则,但是搜索 | 0.359 | 重为结果进 | 解释 | |||
行为主义中的知识推理 | Attnpath(2019)[ | 空间较大,计算效率低 | 0.346 | 行解释 | ||||
DeepPath(2018)[ | 缓解了基于随机游走搜 | 0.301 | 借助强化学 | |||||
基于强化学习 | MINERVA(2018)[ | 索空间过大的问题,但 | 0.298 | 习的推理路 | 局部可 | 事前可解释 | 解释特定 | |
的知识推理 | MultiHop(2018)[ | 黑盒模型的引入导致可 | 0.363 | 径来解释智 | 解释 | 于模型 | ||
SparKGR(2022)[ | 解释性下降 | 0.385 | 能体的行为 | |||||
TransE(2013)[ | 0.326 | |||||||
基于平移距离 | RotateE(2019)[ | 0.338 | 局部可 | 事后可解释 | 解释特定 | |||
的模型 | DuelE(2021)[ | 利用知识图谱表示模 | 0.492 | 关系模式、逻 | 解释 | 于模型 | ||
连接主义中的知识推理 | MuRP(2020)[ | 型,将实体和关系映射 | 0.418 | 辑操作、实体 | ||||
RESCAL(2015)[ | 为低维向量,数值化计 | 0.227 | 的层次关系 | |||||
基于张量分解 | DisMult(2016)[ | 算进行推理预测 | 0.312 | 局部可 | 事后可解释 | 解释特定 | ||
的模型 | ASNALOGY(2019)[ | 0.356 | 解释 | 于模型 | ||||
TuckER(2020)[ | 0.409 | |||||||
KALE(2016)[ | 充分利用规则的准确性 | 0.312 | ||||||
符号规则增强 | PlogicNet(2019)[ | 高、可解释性强的优势, | 0.332 | 逻辑规则推 | 局部可 | 事后可解释 | 解释特定 | |
神经网络的知 | ExpressGNN(2020)[ | 提高神经网络推理的透 | 0.420 | 理路径 | 解释 | 于模型 | ||
新型混合的知识推理 | 识推理 | UniKER(2021)[ | 明性及可靠性 | 0.522 | ||||
Neural LP(2017)[ | 充分利用神经网络鲁棒 | 0.237 | ||||||
神经网络增强 | RLvLR(2019)[ | 性和效率上的优势,缓 | 0.24 | 关系模式逻 | 全局可 | 事前可解释 | 模型无关 | |
符号规则的知 | NLIL(2020)[ | 解数据噪声及搜索空间 | 0.26 | 辑操作实体 | 解释 | |||
识推理 | RNNLogic(2021)[ | 大的问题 | 0.344 | 的层次关系 | ||||
注:由于符号主义中基于本体的知识推理为概念层的推理,推理准确率不以比较。 |
[22] | AUER S , BIZER C , KOBILAROV G ,et al. Dbpedia:a nucleus for a Web of open data[M]// Proceedings of the Semantic Web. Berlin: Springer, 2007. |
[23] | BOLLACKER K , EVANS C , PARITOSH P ,et al. Freebase:a collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD Int Conf on Management of Data. 2008: 1247-1250. |
[24] | HU S , ZOU L , YU J X ,et al. Answering natural language questions by subgraph matching over knowledge graphs[J]. IEEE Trans on Knowledge and Data Engineering, 2017,30(5): 824-837. |
[25] | PALUMBO E , RIZZO G , TRONCY R . Entity2rec:learning user-item relatedness from knowledge graphs for top-n item recommendation[C]// Proceedings of the 7th ACM Conf on Recommender Systems. 2017: 32-36. |
[26] | 宋蕾, 马春光, 段广晗 . 机器学习安全及隐私保护研究进展[J]. 网络与信息安全学报, 2018,4(8): 1-11. |
SONG L , MA C G , DUAN G H . Machine learning security and privacy:a survey[J]. Chinese Journal of Network and Information Security, 2018,4(8): 1-11. | |
[27] | 任奎, 孟泉润, 闫守琨 ,等. 人工智能模型数据泄露的攻击与防御研究综述[J]. 网络与信息安全学报, 2021,7(1): 1-10. |
REN K , MENG Q R , YAN S K ,et al. Survey of artificial intelligence data security and privacy protection[J]. Chinese Journal of Network and Information Security, 2021,7(1): 1-10. | |
[28] | BADER S , GRANGEL-GONZALE Z , NANJAPPA P ,et al. A knowledge graph for industry 4.0[C]// Proceedings of the 2020 European Semantic Web Conf. 2020: 465-480. |
[29] | ISA B , MSBC D . Open-CyKG:an open cyber threat intelligence knowledge graph[J]. Knowledge-Based Systems, 2021,233:107524. |
[1] | RISSOLA E A , BAHRAINIAN S A , CRESTANI F . Personality recognition in conversations using capsule neural networks[C]// Proceedings of the Int Conf on Web Intelligence. 2019: 180-187. |
[2] | SADAK F , SAADAT M , HAJIYAVAND A M . Real-time deep learning-based image recognition for applications in automated positioning and injection of biological cells[J]. Computers in Biology and Medicine, 2020,125(10): 103976. |
[30] | 刘知远, 孙茂松, 林衍凯 ,等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016,53(2): 247-261. |
LIU Z Y , SUN M S , LIN Y K ,et al. Knowledge representation learning:a review[J]. Journal of Computer Research and Development, 2016,53(2): 247-261. | |
[3] | VALMADRE J , BERTINETTO L , HENRIQUES J ,et al. End-to-end representation learning for correlation filter based tracking[C]// Proceedings of the IEEE Conf on Computer Vision and Pattern Recognition. 2017: 2805-2813. |
[4] | MILLEN J . A survey of methods for explaining black box models[J]. Computing Reviews, 2019,60(4): 175-176. |
[31] | LECUE , FREDDY . On the role of knowledge graphs in explainable AI[J]. Semantic Web, 2020,11(1): 41-51. |
[32] | 刘峤, 李杨, 段宏 ,等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016,53(3): 582-600. |
[5] | DOSHI-VELEZ F , KIM B . Towards a rigorous science of interpretable machine learning[J]. arXiv preprint arXiv:1702.08608, 2017. |
[6] | ZHANG Y U , TINO P , LEONARDIS A ,et al. A survey on neural network interpretability[J]. arXiv preprint arXiv:2012.14261, 2021. |
[32] | LIU Q , LI Y , DUAN H ,et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016,53(3): 582-600. |
[33] | 刘潇, 刘书洋, 庄韫恺 ,等. 强化学习可解释性基础问题探索和方法综述[J]. 软件学报, 2021. |
[7] | 成科扬, 王宁, 师文喜 ,等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020,57(6): 1208-1217. |
CHENG K Y , WANG N , SHI W X ,et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020,57(6): 1208-1217. | |
[8] | GAWEHN E , HISS J A , SCHNEIDER G . Deep learning in drug discovery[J]. Molecular Informatics, 2016,35(1): 3-14. |
[9] | 方滨兴 . 定义网络空间安全[J]. 网络与信息安全学报, 2018,4(1): 1-5. |
FANG B X . Define cyberspace security[J]. Chinese Journal of Network and Information Security, 2018,4(1): 1-5. | |
[10] | HOFMAN J M , SHARMA A , WATTS D J . Prediction and explanation in social systems[J]. Science, 2017,355(6324): 486-488. |
[11] | 胡浩, 刘玉岭, 张玉臣 ,等. 基于攻击图的网络安全度量研究综述[J]. 网络与信息安全学报, 2018,4(9): 1-16. |
HU H , LIU Y L , ZHANG Y C ,et al. Survey of attack graph based network security metric[J]. Chinese Journal of Network and Information Security, 2018,4(9): 1-16. | |
[33] | LIU X , LIU S Y , ZHUANG W K ,et al. Explainable reinforcement learning:basic problems exploration and a survey[J]. Journal of Software, 2021. |
[34] | EHRLINGER L , WOLFRAM W . Towards a definition of knowledge graphs[C]// Proceedings of the Posters and Demos Track of 12th International Conference on Semantic Systems - SEMANTiCS2016 and 1st International Workshop on Semantic Change &Evolving Semantics (SuCCESS16). 2016. |
[12] | CHEN X , JIA S , XIANG Y . A review:knowledge reasoning over knowledge graph[J]. Expert Systems with Application, 2020,141(3): 1-21. |
[13] | AMIT S . Introducing the knowledge graph[R]. America:Official Blog of Google, 2012. |
[35] | CHEN X , CHEN H J , ZHANG N Y ,et al. OWL reasoning over big biomedical data[C]// Proceedings of the 2013 IEEE Int Conf on Big Data. 2013: 29-36. |
[36] | ZHANG D H , YUAN Z X , LIU H ,et al. Learn to walk with dual agents for knowledge graph reasoning[C]// Proceedings of the 2022 AAAI Conf on Artificial Intelligence. 2022: 5932-5941. |
[14] | DAVID G , MARK S , JAESIK C ,et al. XAI-Explainable artificial intelligence[J]. Science Robotics, 2019,4(37): 7120. |
[15] | 官赛萍, 靳小龙, 贾岩涛 ,等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018,29(10): 2966-2994. |
[37] | ZOU Y , FININ T , CHEN H . F-OWL:an inference engine for semantic Web[C]// Proceedings of the Int Conf on Formal Approaches to Agent-based Systems. 2004: 238-248. |
[38] | SIRIN E , PARSIA B , GRAU B C ,et al. Pellet:a practical OWL DL reasoner[J]. Journal of Web Semantics, 2007,5(2): 51-53. |
[15] | GUAN S P , JIN X L , JIA Y T ,et al. Knowledge reasoning over knowledge graph:a survey[J]. Journal of Software, 2018,29(10): 2966-2994. |
[16] | WANG Q , MAO Z , WANG B ,et al. Knowledge graph embedding:a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(12): 2724-2743. |
[39] | WEI Y Z , LUO J , XIE H Y . KGRL:an OWL2 RL reasoning system for large scale knowledge graph[C]// Proceedings of the 12th Int Conf on Semantics,Knowledge and Grids. 2016: 83-89. |
[40] | ZHOU J , MA L , LIU Q ,et al. Minerva:a scalable OWL ontology storage and inference system[C]// Proceedings of the Asian Conf on the Semantic Web. 2006: 429-443. |
[41] | SOMA R , PRASANNA V K . Parallel inferencing for OWL knowledge bases[C]// Proceedings of the 37th Int Conf on Parallel Processing. 2008: 75-82. |
[42] | MARX M , KR?TZSCH M , THOST V . Logic on mars:ontologies for generalised property graphs[C]// Proceedings of the 26th Int Joint Conf on Artificial Intelligence. 2017: 118-1194. |
[43] | CHEN Y , GOLDBERG S , WANG D Z ,et al. Ontological pathfinding:mining first-order knowledge from large knowledge bases[C]// Proceedings of the 2016 Int Conf on Management of Data. 2016: 835-846. |
[44] | HAO J H , CHEN M H , YU W C ,et al. Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '19). 2019: 1709-1719. |
[45] | KULMANOV M , LIU-WEI W , YAN Y ,et al. El Embeddings:geometric construction of models for the description logic el++[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19). 2019: 6103-6109. |
[46] | DENG S , ZHANG N , LI L ,et al. Ontoed:low-resource event detection with ontology embedding[J]. arXiv preprint arXiv:2105.10922, 2021. |
[17] | ARORA S . A Survey on graph neural networks for knowledge graph completion[J]. arXiv preprint arXiv:2007.12374, 2020. |
[18] | LIPTON Z C . The mythos of model interpretability[J]. Communications of the ACM, 2016,61(10): 31-57. |
[47] | SCHOENMACKERS S , ETZIONI O , WELD D S ,et al. Learningfirst-order horn clauses from Web text[C]// Proceedings of the 2010 Conf on Empirical Methods in Natural Language Processing. 2010: 1088-1098. |
[48] | LANDWEHR N , KERSTING K , RAEDT L D . Integrating naive Bayes and FOIl[J]. Journal of Machine Learning Research, 2007,8(5): 481-507. |
[19] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012,25(2): 84-90. |
[20] | PAPERNOT N , MCDANIEL P , JHA S ,et al. The limitations of deep learning in adversarial settings[C]// Proceedings of 2016 IEEE European Symp on Security and Privacy. 2016: 372-387. |
[49] | LANDWEHR N , PASSERINI A , RAEDT L D ,et al. Fast learning of relational kernels[J]. Machine Learning, 2010,78(3): 305-342. |
[50] | NAKASHOLE N , SOZIO M , SUCHANEK F M ,et al. Query-time reasoning in uncertain RDF knowledge bases with soft and hard rules[J]. VLDS, 2012,884(6): 15-20. |
[51] | GALáRRAGA L , TELIOUDI C , HOSE K ,et al. Fast rule mining in ontological knowledge bases with AMIE+[J]. The Int Journal on Very Large Data Bases, 2015,24(6): 707-730. |
[52] | GALáRRAGA L , TELIOUDI C , HOSE K ,et al. Amie:association rule mining under incomplete evidence in ontological knowledge bases[C]// Proceedings of the 22nd Int Conf on World Wide Web. 2013: 413-422. |
[53] | WANG Z C , LI J Z . RDF2Rules:learning rules from RDF knowledge bases by mining frequent predicate cycles[J]. arXiv preprint arXiv:1512.07734, 2015. |
[54] | KOK S , DOMINGOS P . Learning the structure of Markov logic networks[C]// Proceedings of the 22nd Int Conf on Machine Learning. 2005: 441-448. |
[55] | RICHARDSON M , DOMINGOS P . Markov logic networks[J]. Machine Learning, 2006,62(1-2): 107-136. |
[56] | ONDREJ K , JESSE D . Markov logic networks for knowledge base completion:a theoretical analysis under the MCAR assumption[C]// Proceedings of the 35th Uncertainty in Artificial Intelligence Conf. 2020: 1138-1148. |
[57] | DE-RAEDT L , KIMMIG A , TOIVONEN H . A probabilistic prolog and its application in link discovery[C]// Proceedings of the 20th Int Joint Conf on Artifical Intelligence. 2007: 2462-2467. |
[58] | CUSSENS J . Parameter estimation in stochastic logic programs[J]. Machine Learn, 2001,44(3): 245-271. |
[59] | WANG W Y , MAZAITIS K , COHEN W W . Programming with personalized pagerank:a locally groundable first-order probabilistic logic[C]// Proceedings of the 22nd ACM Int Conf on Information &Knowledge Management. 2013: 2129-2138. |
[60] | HAVELIWALA T H . Topic-sensitive PageRank:a context-sensitive ranking algorithm for Web search[J]. IEEE Trans on Knowledge and Data Engineering, 2003,15(4): 784-796. |
[61] | KIMMIG A , BACH S H , BROECHELER M ,et al. A short introduction to probabilistic soft logic[C]// Proceedings of the NIPS Workshop on Probabilistic Programming:Foundations and Applications. 2012: 1-4. |
[62] | PUJARA J , MIAO H , GETOOR L ,et al. Ontology-aware partitioning for knowledge graph identification[C]// Proceedings the Workshop on Automated Knowledge Base Construction. 2013: 19-24. |
[63] | BACH S H , BROECHELER M , HUANG B ,et al. Hinge-loss markov random fields and probabilistic soft logic[J]. Computer Science, 2017,18(1): 1-67. |
[64] | MEILICKE C , CHEKOL M W , FINK M ,et al. Reinforced anytime bottom up rule learning for knowledge graph completion[J]. arXiv preprint,arXiv:2004.04412, 2020. |
[65] | PEDRESCHI D , GIANNOTTI F , GUIDOTTI R ,et al. Meaningful explanations of black box ai decision systems[C]// Proceedings of the AAAI Conf on Artificial Intelligence. 2019. |
[66] | LAO N , COHEN W . Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010,81(1): 53-67. |
[67] | LAO N , MITCHELL T , COHEN W . Random walk inference and learning in a large scale knowledge base[C]// Proceedings of the 2011 Conf on Empirical Methods in Natural Language Processing. 2011: 27-31. |
[68] | GARDNER M , TALUKDAR P , KRISHNAMURTHY J ,et al. Incorporating vector space similarity in random walk inference over knowledge bases[C]// Proceedings of the 2014 Conf on Empirical Methods in Natural Language Processing. 2014: 397-406. |
[69] | GARDNER M , MITCHELL T . Efficient and expressive knowledge base completion using subgraph feature extraction[C]// Proceedings of the 2015 Conf on Empirical Methods in Natural Language Processing. 2015: 1488-1498. |
[70] | LIU Q , HAN M , JIANG L ,et al. Two-tier random walk based relational inference algorithm[J]. Chineses Journal of Computers, 2017,40(6): 1275-1290. |
[71] | WEI Z , ZHAO J , LIU K . Mining inference formulas by goal-directed random walks[C]// Proceedings of the 2016 Conf on Empirical Methods in Natural Language Processing. 2016: 1379-1388. |
[72] | WANG Q , LIU J , LUO Y F ,et al. Knowledge base completion via coupled path ranking[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 1308-1318. |
[73] | XIONG W H , HONG T , WANG W Y . DeepPath:a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conf on Empirical Methods in Natural Language Processing. 2017: 564-573. |
[74] | DAS R , DHULIAWALA S , ZAHEER M ,et al. Go for a walk and arrive at the answer:reasoning over paths in knowledge bases using reinforcement learning[C]// Proceedings of the 6th Int Conf on Learning Representations. 2018. |
[75] | GREFF K , SRIVASTAVA R K , KOUTNíK J , ,et al. LSTM:a search space odyssey[J]. IEEE Trans on Neural Networks &Learning Systems, 2016,28(10): 2222-2232. |
[76] | LIN X V , SOCHER R , XIONG C M . Multi- hop knowledge graph reasoning with reward shaping[C]// Proceedings of the 2018 Conf on Empirical Methods in Natural Language Processing. 2018: 3243-3253. |
[77] | SHEN Y , CHEN J , HUANG P S ,et al. M-Walk:learning to walk over graphs using monte carlo tree search[C]// Proceedings of the 32nd Int Conf on Neural Information Processing Systems. 2018: 6786-6797. |
[78] | GODIN F , KUMAR A , MITTAL A . Using ternary rewards to reason over knowledge graphs with deep reinforcement learning[C]// Proceedings of the 2019 Conf and Workshop on Neural Information Processing Systems. 2019: 846-852. |
[79] | LEI D R , JIANG G G , GU X T ,et al. Learning collaborative agents with rule guidance for knowledge graph reasoning[C]// Proceedings of the 2020 Conf on Empirical Methods in Natural Language Processing. 2020: 8541-8547. |
[80] | XIA Y , LAN M J , LUO J Y ,et al. Iterative rule-guided reasoning over sparse knowledge graphs with deep reinforcement learning[C]// Information Processing & Management. 2022:103040. |
[81] | CHEN W H , XIONG W H , YAN X F ,et al. Variational knowledge graph reasoning[C]// Proceedings of the 2018 Conf of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2018: 1823-1832. |
[82] | KINGMA D P , WELLING M . Auto-encoding variational Bayes[C]// Proceedings of the 2nd Int Conf on Learning Representations. 2014: 1-14. |
[83] | LI Z X , JINX L , GUAN S P ,et al. Path reasoning over knowledge graph:a multi-agent and reinforcement learning based method[C]// Proceedings of the 2018 IEEE Int Conf on Data Mining Workshops. 2018: 929-936. |
[84] | YU W T , MA X G , BAI L Y ,et al. Path-based knowledge graph completion combining reinforcement learning with soft rules[C]// Proceedings of the Int Conf on Natural Computation,Fuzzy Systems and Knowledge Discovery. 2019: 139-146. |
[85] | WANG Q , HAO Y S , CAO J . ADRL:an attention-based deep reinforcement learning framework for knowledge graph reasoning[J]. Knowledge-Based Systems, 2020,197(7): 105910. |
[86] | HILDEBRANDT M , SERNA J A Q , MA Y P ,et al. Reasoning on knowledge graphs with debate dynamics[C]// Proceedings of the 34th AAAI Conf on Artificial Intelligence. 2020: 4123-4131. |
[87] | BORDES A , USUNIER N , GARCIADURAN A ,et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th Int Conf on Neural Information Processing Systems. 2013: 2787-2795. |
[88] | WANG Z , ZHANG J W , FENG J L ,et al. Knowledge graph embedding by translating on hyper planes[C]// Proceedings of the 28th AAAI Conf on Artificial Intelligence. 2014: 1112-1119. |
[89] | LIN Y K , LIU Z Y , SUN M S ,et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conf on Artificial Intelligence. 2015: 2181-2187. |
[90] | JI G , LIU K , HE S ,et al. Knowledge graph completion with adaptive sparse transfer matrix[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016: 985-991. |
[91] | SUN Z Q , DENG Z H , NIE J Y ,et al. RotatE:knowledge graph embedding by relational rotation in complex space[C]// Proceedings of the 7th Int Conf on Learning Representations. 2019. |
[92] | ZHANG S , TAY Y , YAO L ,et al. Quaternion knowledge graph embeddings[C]// Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019: 1-14. |
[93] | SONG T W , LUO J , HUANG L . Rot-Pro:modeling transitivity by projection in knowledge graph embedding[J]. Advances in Neural Information Processing Systems, 2021,34. |
[94] | CAO Z S , XU Q Q , YANG Z Y et al . Dual quaternion knowledge graph embeddings[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 6894-6902. |
[95] | LI M , JIA Y , WANG Y ,et al. Hierarchy-based link prediction in knowledge graphs[C]// Proceedings of the 25th International Conference Companion on World Wide Web. 2016: 77-78. |
[96] | ZHANG Z , CAI J , ZHANG Y ,et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 3065-3072. |
[97] | WANG S , FU K , SUN X ,et al. Hierarchical-aware relation rotational knowledge graph embedding for link prediction[J]. Neurocomputing, 2021,458: 259-270. |
[98] | HU Z , HUANG P , DENG Y ,et al. Entity hierarchy embedding[C]// Proceedings of the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. 2015: 1292-1300. |
[99] | BALAZEVIC I , ALLEN C , HOSPEDALES T . Multi-relational poincaré graph embeddings[J]. Advances in Neural Information Processing Systems, 2019,32: 4463-4473. |
[100] | NICKEL M , TRESP V , KRIEGEL H-P . A three-way model for collective learning on multi-relational data[C]// Proceedings of the Int Conf on Machine Learning. 2011: 809-816. |
[101] | YANG B , YI W T , HE X ,et al. Embedding entities and relations for learning and inference in knowledge bases[C]// Proceedings of the 2015 Int Conf on Learning Representations. 2015. |
[102] | TROUILLON T , WELBL J , RIEDEL S ,et al. Complex embeddings for simple link prediction[C]// Proceedings of the Int Conf on Machine Learning. 2016: 2071-2080. |
[103] | LIU H , WU Y , YANG Y . Analogical inference for multi-relational embeddings[C]// Proceedings of the International Conference on Machine Learning. 2017: 2168-2178. |
[104] | BALA?EVI? I , ALLEN C , HOSPEDALES T M . Tucker:tensor factorization for knowledge graph completion[J]. arXiv preprint arXiv:1901.09590, 2019. |
[105] | SOCHER R , CHEN D , MANNING C D ,et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the Advances in Neural Information Processing Systems. 2013: 926-934. |
[106] | BORDES A , GLOROT X , WESTON J ,et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014,94(2): 233-259. |
[107] | LIU Q , JIANG H , Evdokimov A ,et al. Probabilistic reasoning via deep learning:neural association models[J]. arXiv preprint arXiv:1603.07704, 2016. |
[108] | DETTMERS T , MINERVINI P , STENETORP P ,et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018: 1811-1818. |
[109] | VU T , NGUYEN T D , NGUYEN D Q ,et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2019: 2180-2189. |
[110] | VASHISHTH S , SANYAL S , NITIN V ,et al. InteractE:improving convolution-based knowledge graph embeddings by increasing feature interactions[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 3009-3016. |
[111] | YAO L , MAO C , LUO Y . KG-BERT:BERT for knowledge graph completion[J]. arXiv preprint arXiv:1909.03193, 2019. |
[112] | ZHAO Y , ZHOU H , XIE R B ,et al. Incorporating global information in local attention for knowledge representation learning[C]// Proceedings of the Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021. 2021: 1341-1351. |
[113] | 姚思雨, 赵天哲, 王瑞杰 ,等. 规则引导的知识图谱联合嵌入方法[J]. 计算机研究与发展, 2020,57(12): 2514-2522. |
YAO S Y , ZHAO T Z , WANG R J ,et al. Rule-guided joint embedding learning of knowledge graphs[J]. Journal of Computer Research and Development, 2020,57(12): 2514-2522. | |
[114] | GUO S , WANG Q , WANG L H ,et al. Jointly embedding knowledge graphs and logical rules[C]// Proceedings of the 2016 Conf on Empirical Methods in Natural Language Processing. 2016: 192-202. |
[115] | GUO S , WANG Q , WANG L H ,et al. Knowledge graph embedding with iterative guidance from soft rules[C]// Proceedings of the 32th AAAI Conf on Artificial Intelligence. 2018: 4816-4823. |
[116] | WANG P W , DOU D J , WU F Z ,et al. Logic rules powered knowledge graph embedding[J]. arXiv preprint,arXiv:1903.03772, 2019. |
[117] | ZHANG W , PAUDEL B , WANG L ,et al. Iteratively learning embeddings and rules for knowledge graph reasoning[C]// Proceedings of the World Wide Web Conf. 2019: 2366-2377. |
[21] | SUCHANEK F M , KASNECI G , WEIKUM G . Yago:a core of semantic knowledge[C]// Proceedings of the 16th Int Conf on World Wide Web. 2007: 697-706. |
[118] | CHENG K W , YANG Z Q , ZHANG M ,et al. UniKER:a unified framework for combining embedding and definite horn rule reasoning for knowledge graph inference[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021: 9753-9771. |
[119] | NEELAKANTAN A , ROTH B , MCCALLUM A . Compositional vector space models for knowledge base completion[J]. Computer Science, 2015: 1-16. |
[120] | SHEN Y , HUANG P S , CHANG M W ,et al. Traversing knowledge graph in vector space without symbolic space guidance[J]. arXiv preprint,arXiv:1611.04642, 2016. |
[121] | DAS R , NEELAKANTAN A , BELANGER D ,et al. Chains of reasoning over entities,relations,and text using recurrent neural networks[C]// Proceedings of the 15th Conf of the European Chapter of the Association for Computational Linguistics. 2017: 132-141. |
[122] | WANG Z K , LI L J , ZENG D D . Attention-based multi-hop reasoning for knowledge graph[C]// Proceedings of the 2018 IEEE Int Conf on Intelligence and Security Informatics. 2018: 211-213. |
[123] | NIU G , ZHANG Y , LI B ,et al. Rule-guided compositional representation learning on knowledge graphs[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 2950-2958. |
[124] | QU M , TANG J . Probabilistic logic neural networks for reasoning[C]// Proceedings of the Advances in Neural Information Processing Systems. 2019: 7712-7722. |
[125] | ZHANG Y Y , CHEN X S , YANG Y ,et al. Efficient probabilistic logic reasoning with graph neural networks[J]. arXiv preprint,arXiv:2001.11850, 2020. |
[126] | VARDHAN L V H , JIA G , KOK S . Probabilistic logic graph attention networks for reasoning[C]// Proceedings of the World Wide Web Conf 2020. 2020: 669-673. |
[127] | COHEN W W . Tensorlog:a differentiable deductive database[J]. arXiv preprint,arXiv:1605.06523, 2020. |
[128] | EVANS R , GREFENSTETTE E . Learning explanatory rules from noisy data[J]. Journal of Artificial Intelligence Research, 2018,61(8): 1-64. |
[129] | YANG F , YANG Z , COHEN W W . Differentiable learning of logical rules for knowledge base reasoning[C]// Proceedings of the Advances in Neural Information Processing Systems. 2017: 2319-2328. |
[130] | WANG P , STEPANOVA D , DOMOKOS C ,et al. Differentiable learning of numerical rules in knowledge graphs[C]// Proceedings of the 8th Int Conf on Learning Representations. 2020. |
[131] | YAN Y , SONG L . Learn to explain efficiently via neural logic inductive learning[C]// Proceedings of the 8th Int Conf on Learning Representations. 2020. |
[132] | WANG S , WEI X K , NOGUEIRA DOS SANTOS C N ,et al. Mixed-curvature multi-relational graph neural network for knowledge graph completion[C]// Proceedings of the Web Conference. 2021: 1761-1771. |
[133] | TERU K K , DENIS E , HAMILTON W L . Inductive relation prediction by subgraph reasoning[J]. arXiv preprint,arXiv:1911.06962, 2019. |
[134] | DU Z , ZHOU C , DING M ,et al. Cognitive knowledge graph reasoning for one-shot relational learning[J]. IEEE Trans on Knowledge and Data Engineering, 2021. |
[135] | XU X R , FENG W , JIANG Y S ,et al. Dynamically pruned message passing networks for large-scale knowledge graph reasoning[C]// Proceedings of the 2020 Int Conf on Learning Representations. 2020. |
[136] | HO V T , STEPANOVA D , GAD-ELRAB M H ,et al. Rule learning from knowledge graphs guided by embedding models[C]// Proceedings of the 17th Int Semantic Web Conf. 2018: 72-90. |
[137] | OMRAN P G , WANG K , WANG Z . Scalable rule learning via learning representation[C]// Proceedings of the 27th Int Joint Conf on Artificial Intelligence. 2018: 2149-2155. |
[138] | DONG H H , MAO J Y , LIN T ,et al. Neural logic machines[C]// Proceedings of the 7th Int Conf on Learning Reresentations. 2019. |
[139] | PAN Y , LIU J , ZHANG L ,et al. Learning first-order rules with relational path contrast for inductive relation reasoning[J]. arXiv preprint arXiv:2110.08810, 2021. |
[140] | QU M , CHEN J K , XHONNEUX L P ,et al. RNNLogic:learning logic rules for reasoning on knowledge graphs[C]// Proceedings of the 2021 Int Conf on Learning Representations. 2021. |
[141] | XIA Y , ZHOU G , LUO J Y ,et al. PFCA:an intelligent method of multidimensional user profile construction and application[C]// Proceedings of the 2022 Int Conf on big data analytics. 2022: 272-279. |
[142] | LYU X , CAO Y X , HOU L ,et al. Is multi-hop reasoning really explainable? Towards benchmarking reasoning interpretability[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021: 8899-8911. |
[1] | 沈晓晨, 葛寅辉, 陈波, 于泠. 人工智能安全知识图谱构建技术研究[J]. 网络与信息安全学报, 2023, 9(2): 164-174. |
[2] | 刘赣秦, 李晖, 朱辉, 黄煜坤, 刘兴东. 低功耗嵌入式平台的SM2国密算法优化实现[J]. 网络与信息安全学报, 2022, 8(6): 29-38. |
[3] | 刘军, 袁霖, 冯志尚. 集群网络密钥管理方案研究综述[J]. 网络与信息安全学报, 2022, 8(6): 52-69. |
[4] | 孙澄, 胡浩, 杨英杰, 张红旗. 基于网络防御知识图谱的0day攻击路径预测方法[J]. 网络与信息安全学报, 2022, 8(1): 151-166. |
[5] | 谢绒娜, 范晓楠, 袁琳, 郭子晨, 朱家玉, 史国振. 在线社交网络中延伸访问控制机制研究[J]. 网络与信息安全学报, 2021, 7(5): 123-131. |
[6] | 李瑾, 曹进, 张跃宇, 张美茹, 李晖. 信息安全专业课程思政的逆向教学设计——以西安电子科技大学“无线通信网络安全”课程为例[J]. 网络与信息安全学报, 2021, 7(3): 166-174. |
[7] | 刘国杰,张建标. 基于TPCM的服务器可信PXE启动方法[J]. 网络与信息安全学报, 2020, 6(6): 105-111. |
[8] | 胡桥,胡玉鹏,廖鑫,秦拯,孙建华,张吉良. 湖南大学信息安全专业本科培养计划修订调查分析及改进思路[J]. 网络与信息安全学报, 2020, 6(4): 153-158. |
[9] | 曲强,于洪涛,黄瑞阳. 基于注意力机制的社交垃圾文本检测方法[J]. 网络与信息安全学报, 2020, 6(1): 54-61. |
[10] | 贾春福,李瑞琪,田美琦,程晓阳. 信息安全与法学复合型人才培养模式[J]. 网络与信息安全学报, 2019, 5(3): 31-35. |
[11] | 左金鑫,郭子裕,李瑾,张洁,陆月明. 机密稳健复杂系统安全性评估方法[J]. 网络与信息安全学报, 2019, 5(2): 58-65. |
[12] | 陈舒荻,朱友文. 抗肩窥攻击的安全口令输入方法[J]. 网络与信息安全学报, 2019, 5(1): 87-93. |
[13] | 程莹. 风险管理模式下的数据保护影响评估制度[J]. 网络与信息安全学报, 2018, 4(8): 63-70. |
[14] | 丁悦航, 于洪涛, 黄瑞阳, 李英乐. 本体摘要技术综述[J]. 网络与信息安全学报, 2018, 4(10): 12-21. |
[15] | 毋泽南,田立勤,王志刚. 基于机器学习的Web用户行为认证[J]. 网络与信息安全学报, 2018, 4(1): 45-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|