1 |
潘吴斌, 程光, 郭晓军, 等. 网络加密流量识别研究综述及展望[J]. 通信学报, 2016, 37(9): 154-167.
|
|
PAN W B, CHENG G, GUO X J, et al. Review and perspective on encrypted traffic identification research[J]. Journal on Communications, 2016, 37(9): 154-167.
|
2 |
史国振, 李昆阳, 刘瑶, 等. 基于深度残差胶囊网络与注意力机制的加密流量识别方法[J]. 网络与信息安全学报, 2023, 9(1): 32-41.
|
|
SHI G Z, LI K Y, LIU Y, et al. Encrypted traffic identification method based on deep residual capsule network with attention mechanism[J]. Chinese Journal of Network and Information Security, 2023, 9(1): 32-41.
|
3 |
JAYASANKAR U, THIRUMAL V, PONNURANGAM D. A survey on data compression techniques: from the perspective of data quality, coding schemes, data type and applications[J]. Journal of King Saud University - Computer and Information Sciences, 2021, 33(2): 119-140.
|
4 |
CHENG G, HU Y. Encrypted traffic identification based on N-gram entropy and cumulative sum test[C]//Proceedings of the 13th International Conference on Future Internet Technologies. New York: ACM, 2018: 1-6.
|
5 |
DORFINGER P, PANHOLZER G, JOHN W. Entropy estimation for real-time encrypted traffic identification (short paper)[C]//International Workshop on Traffic Monitoring and Analysis. Berlin, Heidelberg: Springer, 2011: 164-171.
|
6 |
WOOD D, APTHORPE N, FEAMSTER N. Cleartext data transmissions in consumer IoT medical devices[EB]. arXiv Preprint arXiv: , 2018.
|
7 |
程光, 陈玉祥. 基于支持向量机的加密流量识别方法[J]. 东南大学学报(自然科学版), 2017, 47(4): 655-659.
|
|
CHENG G, CHEN Y X. Identification method of encrypted traffic based on support vector machine[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(4): 655-659.
|
8 |
HAHN D, APTHORPE N, FEAMSTER N. Detecting compressed cleartext traffic from consumer Internet of Things devices[EB]. arXiv Preprint arXiv: , 2018.
|
9 |
TANG Z, ZENG X, SHENG Y. Entropy-based feature extraction algorithm for encrypted and non-encrypted compressed traffic classification[J]. Int J Innov Comput Inf Control, 2019, 15: 845-860.
|
10 |
陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、分类与识别研究综述[J]. 计算机学报, 2023, 46(5): 1060-1085.
|
|
CHEN Z H, CHENG G, XU Z H, et al. A survey on Internet encrypted traffic detection, classification and identification[J]. Chinese Journal of Computers, 2023, 46(5): 1060-1085.
|
11 |
CASINO F, CHOO K K R, PATSAKIS C. HEDGE: efficient traffic classification of encrypted and compressed packets[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(11): 2916-2926.
|
12 |
GASPARI D F, HITAJ D, PAGNOTTA G, et al. Reliable detection of compressed and encrypted data[J]. Neural Computing and Applications, 2022, 34(22): 20379-20393.
|
13 |
SALEH M M, ALSLAIMAN M, SALMAN M I, et al. Combining raw data and engineered features for optimizing encrypted and compressed Internet of Things traffic classification[J]. Computers & Security, 2023, 130: 103287.
|
14 |
BHATTACHARJEE K, DAS S. A search for good pseudo-random number generators: Survey and empirical studies[J]. Computer Science Review, 2022, 45: 100471.
|
15 |
FU N, CHENG G, SU X Y. Accurate compressed traffic detection via traffic analysis using graph convolutional network based on graph structure feature[J]. Computer Communications, 2023, 207: 128-139.
|
16 |
李光松, 李文清, 李青. 基于随机性特征的加密和压缩流量分类[J]. 吉林大学学报(工学版), 2021, 51(4): 1375-1386.
|
|
LI G S, LI W Q, LI Q. Encrypted and compressed traffic classification based on random feature set[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1375-1386.
|
17 |
王勇, 周慧怡, 俸皓, 等. 基于深度卷积神经网络的网络流量分类方法[J]. 通信学报, 2018, 39(1): 14-23.
|
|
WANG Y, ZHOU H Y, FENG H, et al. Network traffic classification method basing on CNN[J]. Journal on Communications, 2018, 39(1): 14-23.
|
18 |
SIKOS L F. Packet analysis for network forensics: a comprehensive survey[J]. Forensic Science International: Digital Investigation, 2020, 32: 200892.
|
19 |
NIHAN S T. Karl pearsons chi-square tests[J]. Educational Research and Reviews, 2020, 15(9): 575-580.
|
20 |
LUENGO E A, OLIVARES B A, VILLALBA L J G, et al. Further analysis of the statistical independence of the NIST SP 800-22 randomness tests[J]. Applied Mathematics and Computation, 2023, 459: 128222.
|
21 |
JAMIL S, PIRAN M J, RAHMAN M, et al. Learning-driven lossy image compression: a comprehensive survey[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106361.
|
22 |
JAYASANKAR U, THIRUMAL V, PONNURANGAM D. A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications[J]. Journal of King Saud University - Computer and Information Sciences, 2021, 33(2): 119-140.
|