[1] |
吕琳媛, 任晓龙, 周涛 . 网络链路预测:概念与前沿[J]. 中国计算机学会通讯, 2016,012(4): 12-19.
|
|
LYU L Y , REN X L , ZHOU T . Network link prediction:concepts and frontiers[J]. Communications of China Computer Society, 2016,12(4): 12-19.
|
[2] |
WANG M , QIU L , WANG X . A survey on knowledge graph embeddings for link prediction[J]. Symmetry, 2021,13(3): 485.
|
[3] |
WU X , WU J , LI Y ,et al. Link prediction of time-evolving network based on node ranking[J]. Knowledge-Based Systems, 2020,195:105740.
|
[4] |
DIVAKARAN A , MOHAN A . Temporal link prediction:A survey[J]. New Generation Computing, 2019,38(3): 1-46.
|
[5] |
BARABáSI A L , ALBERT R . Emergence of scaling in random networks[J]. Science, 1999,286(5439): 509-512.
|
[6] |
MARTINEZ V , BERZAL F , CUBERO J C . A survey of link prediction in complex networks[J]. ACM Computing Surveys, 2017,49(4): 69.1-69.33.
|
[7] |
LORRAIN F , WHITE H C . Structural equivalence of individuals in social networks[J]. Social Networks, 1977,1(1): 67-98.
|
[8] |
ZHOU T , L Lü , ZHANG Y C . Predicting missing links via local information[J]. European Physical Journal B, 2009,71(4): 623-630.
|
[9] |
Lü L Y , JIN C H , ZHOU T . Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009,80(4): 046122.
|
[10] |
KATZ L . A new status index derived from sociometric analysis[J]. Psychometrika, 1953,18(1): 39-43.
|
[11] |
ZHAO H , DU L , BUNTINE W . Leveraging node attributes for incomplete relational data[C]// International Conference on Machine Learning. Sydney,Australia, 2017: 4072-4081.
|
[12] |
刘树新, 李星, 陈鸿昶 ,等. 基于资源传输匹配度的复杂网络链路预测方法[J]. 通信学报, 2020,041(006): 70-79.
|
|
LIU S X , LI X , CHEN H C ,et al. Link prediction method based on matching degree of resource transmission for complex network[J]. Journal on Communications, 2020,41(6): 70-79.
|
[13] |
JAVARI A , QIU H , BARZEGARAN E , JALILI ,et al. Statistical link label modeling for sign prediction:Smoothing sparsityby joining local and global information[C]. Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM),Orleans,LA,USA, 2017: 1039-1044.
|
[14] |
PAN L , ZHOU T , Lü L ,et al. Predicting missing links and identifying spurious links via likelihood analysis[J]. Scientific Reports, 2016,6(1): 1-10.
|
[15] |
LI T , WANG B , JIANG Y ,et al. Restricted Boltzmann machine-based approaches for link prediction in dynamic networks[J]. IEEE Access, 2018,6: 29940-29951.
|
[16] |
CHEN J , XU X , WU Y ,et al. GC-LSTM:graph convolution embedded LSTM for dynamic link prediction[J]. Applied Intelligence. 2021,52: 1-16.
|
[17] |
DAUD N N , AB HAMID S H , SAADOON M ,et al. Applications of link prediction in social networks:A review[J]. Journal of Network and Computer Applications, 2020,166:102716.
|
[18] |
WANG P , XU B W , WU Y R ,et al. Link prediction in social networks:The state-of-the-art[J]. Science China Information Sciences, 2015,58(1): 1-38.
|
[19] |
刘书新, 刘群, 杜凡 . 基于模体演化与社区一致性的时序链路预测方法[J]. 计算机应用研究, 2019,36(12): 3674-3678,3684.
|
|
LIU S X , LIU Q , DU F . Time series link prediction method based on motif evolution and community consistency[J]. Application Research of Computers, 2019,36(12): 3674-3678,3684.
|
[20] |
JORGE , VALVERDE-REBAZA , ALNEU ,et al. Exploiting behaviors of communities of twitter users for link prediction[J]. Social Network Analysis & Mining, 2013,3(4): 1063-1074.
|
[21] |
LIU H , HU Z , HADDADI H ,et al. Hidden link prediction based on node centrality and weak ties[J]. EPL (Europhysics Letters), 2013,101:18004.
|
[22] |
IBRAHIM N M A , CHEN L . Link prediction in dynamic social networks by integrating different types of information[J]. Applied Intelligence, 2015,42(4): 738-750.
|
[23] |
VALVERDE-REBAZA J C , Lopes A . Link prediction in complex networks based on cluster information[C]// Advances in Artificial Intelligence-SBIA 2012,Berlin:Springer-Verlag, 2012: 92-101.
|
[24] |
WANG J , MA Y , LIU M ,et al. A vertex similarity index using community information to improve link prediction accuracy[J]. 2017 IEEE International Conference on Systems,Man,and Cybernetics (SMC), 2017: 158-163.
|
[25] |
焦杨 . 复杂网络社区检测、链路预测及应用[D]. 西安:西安电子科技大学, 2018.
|
|
JIAO Y . Community detection,link prediction and applications in complex networks[D]. Xi'an:Xidian University, 2018.
|
[26] |
GüNE? ? , GüNDüZ-??üDüCü ? , ?ATALTEPE Z . Link prediction using time series of neighborhood-based node similarity scores[J]. Data Mining & Knowledge Discovery, 2016,30(1): 147-180.
|
[27] |
OZCAN A , OGUDUCU S G . Supervised temporal link prediction using time series of similarity measures[C]// International Conference on Ubiquitous & Future Networks,Milan,Italy. 2017: 519-521.
|
[28] |
LIU SHUXIN , LIU QUN , Du fan . Time series link prediction method based on motif evolution and community consistency[J]. Computer application research, 2019,36(12): 3674-3678.
|
[29] |
HU W , TONG S , MENGERSEN K ,et al. Weather variability and the incidence of cryptosporidiosis:comparison of time series poisson regression and SARIMA models[J]. Annals of Epidemiology, 2007,17(9): 679-688.
|
[30] |
SKARDING J , GABRYS B , MUSIAL K . Foundations and modeling of dynamic networks using dynamic graph neural networks:A survey[J]. IEEE Access, 2021,9: 79143-79168.
|
[31] |
YANG Y , LICHTENWALTER R N , CHAWLA N V.(2014) . Evaluating link prediction methods[J]. Knowledge and Information Systems, 45(3), 751-782.
|
[32] |
MORONE F , MAKSE H A . Influence maximization in complex networks through optimal percolation[J]. Nature, 2015,524(7563): 65-68.
|
[33] |
BLONDEL V D , GUILLAUME J L , LAMBIOTTE R ,et al. Fast unfolding of communities in large networks[J]. Journal Statistical Mechanics:Theory and Experiment, 2008,10:1008.
|
[34] |
GOLDBERG Y , LEVY O . Word2vec explained:deriving Mikolov et al.'s negative-sampling word-embedding method[J]. arXiv, 2014,arxiv:1402.3722.
|
[35] |
GROVER A , LESKOVEC J . Node2vec:Scalable feature learning for networks[C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,CA,USA,13-17 August 2016: 855-864.
|
[36] |
SELVARAJAH K , RAGUNATHAN K , KOBTI Z ,et al. Dynamic network link prediction by learning effective subgraphs using CNN-LSTM[C]. Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN),Glasgow,UK,IEEE:Glasgow,UK, 2020: 1-8.
|
[37] |
LESKOVEC J , KLEINBERG J , FALOUTSOS C . Graph evolution:densification and shrinking diameters[J]. ACM transactions on Knowledge Discovery from Data (TKDD), 2007,1(1).
|
[38] |
LESKOVEC J , LANG K J , DASGUPTA A ,et al. Community structure in large networks:natural cluster sizes and the absence of large well-defined clusters[J]. Internet Mathematics, 2009,6(1): 29-123.
|
[39] |
KUNEGIS J , . Konect:The koblenz network collection[C]. Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro,Brazil, 2013: 1343-1350.
|
[40] |
PANZARASA P , OPSAHL T , CARLEY K M . Patterns and dynamics of users’ behavior and interaction:network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009,60(5): 911-932.
|
[41] |
LESKOVEC J , KREVL A . SNAP Datasets:Stanford large network dataset collection[EB]. 2014.
|
[42] |
TANG J , QU M , WANG M ,et al. Line:large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Florence,Italy, 2015: 1067-1077.
|
[43] |
SANKAR A , WU Y , GOU L ,et al. Dysat:Deep neural representation learning on dynamic graphs via self-attention networks[C]. Proceedings of the 13th International Conference on Web Search and Data Mining. Houston,TX,USA, 2020: 519-527.
|
[44] |
PAREJA A , DOMENICONI G , Chen J ,et al. Evolvegcn:evolving graph convolutional networks for dynamic graphs[C]// Proceedings of the AAAI Conference on Artificial Intelligence.New York. NY,USA, 2020,34(4): 5363-5370.
|