电信科学 ›› 2021, Vol. 37 ›› Issue (4): 1-13.doi: 10.11959/j.issn.1000-0801.2021029
• 综述 • 下一篇
赵军辉1,2, 张丹阳1, 贺林1
修回日期:
2021-01-19
出版日期:
2021-04-20
发布日期:
2021-04-01
作者简介:
赵军辉(1973- ),男,博士,北京交通大学电子信息工程学院教授、博士生导师,华东交通大学信息工程学院院长,主要研究方向为 6G 移动通信、车联网、轨道交通无线通信、智能信息处理、物联网等基金资助:
Junhui ZHAO1,2, Danyang ZHANG1, Lin HE1
Revised:
2021-01-19
Online:
2021-04-20
Published:
2021-04-01
Supported by:
摘要:
为解决由城轨环境特殊性导致的通信可靠性、时延性能降低以及运营效率瓶颈等问题,首先从整体运营控制的角度分析了城轨通信需求。结合新型智能运行控制技术及T2T(train to train,列车到列车)通信、5G、人工智能、移动边缘计算等新兴信息技术对城轨通信关键技术进行梳理、总结与展望;然后提出了一种新型城轨通信网络架构,最后探讨了智慧城轨通信技术的研究方向与面临的挑战,为智慧城市的发展提供研究基础。
中图分类号:
赵军辉, 张丹阳, 贺林. 智慧城轨交通通信技术的分析与展望[J]. 电信科学, 2021, 37(4): 1-13.
Junhui ZHAO, Danyang ZHANG, Lin HE. Analysis and prospect of communication technology in smart urban rail[J]. Telecommunications Science, 2021, 37(4): 1-13.
表2
城轨交通通信技术对比"
通信解决方案 | 系统架构 | 通信模式 | 信号系统数据吞吐 | 理论最高支持列车运行速度 | 优势与限制 |
TBTC | 轨道电路 | 单向传输车到地信息 | / | 80 km/h | 无须无线传输,但基于电气化轨道电路的安全隐患高 |
WLAN | 轨旁 AP+无线传输媒介 | 车地间双向实时传输 | 3 Mbit/s | 140 km/h | 支持无线传输,但数据速率低,车地传输设备复杂,极易受到干扰 |
LTE-M | 轨旁BBU+RRU+无线传输媒介 | 车地间双向实时传输 | 10 Mbit/s | 200 km/h | 提供更高的数据传输速率,但频谱资源稀缺,频谱利用率较低 |
LTE-M+MEC | 同 上 并 增 加MEC服务器 | 车地间双向实时传输 | ≥10 Mbit/s | 200 km/h | 满足较高数据传输速率并优化传输时延,但成本较高 |
T2T | 在 CBTC 系统基础上增加车车通信设备,简化车地通信 | 车地间双向实时传输,并增加冗余车到车通信 | WLAN:≥3 Mbit/s LTE-M:≥10 Mbit/s | WLAN:140 km/h LTE-M:200 km/h | 提升列车安全性能以及运行效率,但频谱资源限制导致新的资源分配问题 |
5G-M | 基于5G通信系统 | 车地间双向实时传输 | ≥500 Mbit/s | 250 km/h | 数据传输速率极高,但覆盖范围小,存在频繁切换以及高昂的建设成本问题 |
[1] | SONG H F , SCHNIEDER E . Availability and performance analysis of train-to-train data communication system[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(7): 2786-2795. |
[2] | JAHANZEB F , SOLER J . Radio communication for communications-based train control (CBTC):a tutorial and survey[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1377-1402. |
[3] | CHEN R , LONG W X , MAO G Q ,et al. Development trends of mobile communication systems for railways[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 3131-3141. |
[4] | 郜春海, 包峰 . 全自动运行系统的兴起与未来之路[J]. 城市轨道交通, 2019(2): 18-19. |
GAO C H , BAO F . The rise and future of fully automatic operation system[J]. China Metros, 2019(2): 18-19. | |
[5] | 宁滨, 郜春海, 李开成 ,等. 中国城市轨道交通全自动运行系统技术及应用[J]. 北京交通大学学报, 2019,43(1): 1-6. |
NING B , GAO C H , LI K C ,et al. Technology and application of fully automatic operation system for urban rail transit in China[J]. Journal of Beijing Jiaotong University, 2019,43(1): 1-6. | |
[6] | ZHU L , YAO D Y , ZHAO H L . Reliability analysis of nextgeneration CBTC data communication systems[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2024-2034. |
[7] | 鲁玉龙, 沈海燕, 解亚龙 ,等. 边缘计算融合NB-IoT在高铁联调联试中的关键技术研究[J]. 中国设备工程, 2020(7): 175-177. |
LU Y L , SHEN H Y , XIE Y L ,et al. Research on the key technology of edge computing fusion NB-IoT in high-speed rail joint test[J]. China Plant Engineering, 2020(7): 175-177. | |
[8] | 谢红霞, 孙林祥 . 轨道交通车-地通信无线局域网技术应用[J]. 铁道通信信号, 2020,56(2): 63-66. |
XIE H X , SUN L X . Application of WLAN technology for rail transit train-ground communication[J]. Railway Signalling &Communication, 2020,56(2): 63-66. | |
[9] | 路向阳, 李东林, 李雷 ,等. 智慧城轨下智慧车辆装备技术的研究与展望[J]. 机车电传动, 2018(6): 1-8. |
LU X Y , LI D L , LI L ,et al. Study and prospect of equipment technology for smart rolling stock in smart urban rail transit system[J]. Electric Drive for Locomotives, 2018(6): 1-8. | |
[10] | MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2595-2621. |
[11] | LIU X , XU Y H , CHENG Y P ,et al. A heterogeneous information fusion deep reinforcement learning for intelligent frequency selection of HF communication[J]. China Communications, 2018,15(9): 73-84. |
[12] | CUI Y , MARTIN U , ZHAO W T . Calibration of disturbance parameters in railway operational simulation based on reinforcement learning[J]. Journal of Rail Transport Planning &Management, 2016,6(1): 1-12. |
[13] | YANG Z P , ZHU F Q , LIN F . Deep-reinforcement-learning-based energy management strategy for supercapacitor energy storage systems in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(2): 1150-1160. |
[14] | ZHAO J H , ZHANG Y , NIE Y W ,et al. Intelligent resource allocation for train-to-train communication:a multi-agent deep reinforcement learning approach[J]. IEEE Access, 2020(8): 8032-8040. |
[15] | 谭俊杰, 梁应敞 . 面向智能通信的深度强化学习方法[J]. 电子科技大学学报, 2020,49(2): 169-181. |
TAN J J , LIANG Y C . Deep reinforcement learning for intelligent communications[J]. Journal of University of Electronic Science and Technology of China, 2020,49(2): 169-181. | |
[16] | WANG X X , LIU L J , ZHU L ,et al. Train-centric CBTC meets age of information in train-to-train communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,21(10): 4072-4085. |
[17] | WANG X X , LIU L J , TANG T ,et al. Enhancing communication-based train control systems through train-to-train communications[J]. Transactions on Intelligent Transportation Systems, 2019,20(4): 1544-1561. |
[18] | PASCOE R D , EICHORN T N . What is communication-based train control[J]. IEEE Vehicular Technology Magazine, 2009,4(4): 16-21. |
[19] | WANG H W , YU F R , JIANG H L . Modeling of radio channels with leaky coaxial cable for LTE-M based CBTC systems[J]. IEEE Communications Letters, 2016,20(5): 1038-1041. |
[20] | ZHAO J H , LIU J , NI S J ,et al. Enhancing transmission on hybrid precoding based train-to-train communication[J]. Mobile Networks and Applications, 2020,25(5): 2082-2091. |
[21] | 倪善金, 赵军辉 . 5G无线通信网络物理层关键技术[J]. 电信科学, 2015,31(12): 48-53. |
NI S J , ZHAO J H . Key technologies in physical layer of 5G wireless communications network[J]. Telecommunications Science, 2015,31(12): 48-53. | |
[22] | ANDREAS L , STRANG T , RICO-GARCíA C . A reliable surveillance strategy for an autonomous rail collision avoidance system[C]// Proceedings of the 15th ITS World Congress. New York:ACM Press, 2008. |
[23] | 何芊颖 . 基于TSSM的车车通信系统车载移动授权模块的建模和验证[D]. 北京:北京交通大学, 2017. |
HE Q Y . TSSM-based modeling and verification of VBTC MA unit in VOBC[D]. Beijing:Beijing Jiaotong University, 2017. | |
[24] | 徐纪康 . 基于车-车通信的新型CBTC系统分析[J]. 铁道通信信号, 2014,50(6): 78-80. |
XU J K . Analysis of a new CBTC system based on train-train communication[J]. Railway Signalling & Communication, 2014,50(6): 78-80. | |
[25] | 林俊亭, 王晓明, 党垚 ,等. 城市轨道交通列车碰撞防护系统设计与研究[J]. 铁道科学与工程学报, 2015,12(2): 407-413. |
LIN J T , WANG X M , DANG Y ,et al. Design and research of the improved train control system with collision avoidance system for urban mass transit[J]. Journal of Railway Science and Engineering, 2015,12(2): 407-413. | |
[26] | 郜城城, 周旭, 范鹏飞 ,等. 移动边缘计算技术在高铁通信网络中的应用[J]. 计算机系统应用, 2018,27(8): 56-62. |
GAO C C , ZHOU X , FAN P F ,et al. Application of mobile edge computing technology in high speed rail communication network[J]. Computer Systems & Applications, 2018,27(8): 56-62. | |
[27] | 李斌 . 基于 MEC 的高速铁路无线通信网络优化方案[J]. 电信科学, 2019,35(11): 88-95. |
LI B . Wireless communication network optimization scheme for high-speed railway based on MEC[J]. Telecommunications Science, 2019,35(11): 88-95. | |
[28] | HALTUF M . Shift rail JU from member state’s point of view[J]. Transportation Research Procedia, 2016(14): 1819-1828. |
[29] | ZHANG J Y , BJ?RNSON E , MATTHAIOU M ,et al. Prospective multiple antenna technologies for beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020,38(8): 1637-1660. |
[30] | YAN L , FANG X M , WANG X B ,et al. AI-enabled sub-6-GHz and mm-wave hybrid communications:considerations for use with future HSR wireless systems[J]. IEEE Vehicular Technology Magazine, 2020,15(3): 59-67. |
[31] | 刘云毅, 赵军辉, 王传云 . 高速铁路宽带无线通信系统越区切换技术[J]. 电信科学, 2017,33(11): 37-46. |
LIU Y Y , ZHAO J H , WANG C Y . Handover technology in high-speed railway broadband wireless communication system[J]. Telecommunications Science, 2017,33(11): 37-46. | |
[32] | 艾渤, 章嘉懿, 何睿斯 ,等. 面向智能高铁业务和应用的 5G基础理论与关键技术[J]. 中国科学基金, 2020,34(2): 133-141. |
AI B , ZHANG J Y , HE R S ,et al. Fundamental theory and key technologies of 5G for service and application of intelligent high-speed railway[J]. Bulletin of National Natural Science Foundation of China, 2020,34(2): 133-141. | |
[33] | SOLIMAN M , SIEMONS J , KOCHEMS J ,et al. Automatic train coupling:challenges and key enablers[J]. IEEE Communications Magazine, 2019,57(9): 32-38. |
[34] | ZHAO J H , NI S J , YANG L H ,et al. Multiband cooperation for 5G HetNets:a promising network paradigm[J]. IEEE Vehicular Technology Magazine, 2019,14(4): 85-93. |
[35] | MORENO J , RIERA J M , HARO L D ,et al. A survey on future railway radio communications services:challenges and opportunities[J]. IEEE Communications Magazine, 2015,53(10): 62-68. |
[1] | 郭泽华, 朱昊文, 徐同文. 面向分布式机器学习的网络模态创新[J]. 电信科学, 2023, 39(6): 44-51. |
[2] | 马晓亮, 刘英, 杜德泉, 安玲玲. 运营商智能客服的关键技术和发展趋势[J]. 电信科学, 2023, 39(5): 76-89. |
[3] | 蒋瑞红, 冯一哲, 孙耀华, 郑海娜. 面向低轨卫星网络的组网关键技术综述[J]. 电信科学, 2023, 39(2): 37-47. |
[4] | 徐英姿, 刘原, 时梦然, 韩书君, 董辰, 王碧舳. 语义在通信中的应用综述[J]. 电信科学, 2022, 38(Z1): 43-59. |
[5] | 王晴天, 刘洋, 刘海涛, 宗佳颖, 杨峰义. 面向6G的网络智能化研究[J]. 电信科学, 2022, 38(9): 151-160. |
[6] | 张天魁, 徐瑜, 刘元玮, 杨鼎成, 任元红. 无人机辅助MEC系统:架构、关键技术与未来挑战[J]. 电信科学, 2022, 38(8): 3-16. |
[7] | 李爱华, 吴晓波, 陈超, 魏彬, 史嫄嫄. 5G网络大数据智能分析技术[J]. 电信科学, 2022, 38(8): 129-139. |
[8] | 邓平科, 张同须, 施南翔, 张童, 邵天竺, 郑韶雯. 星算网络——空天地一体化算力融合网络新发展[J]. 电信科学, 2022, 38(6): 71-81. |
[9] | 黄秋萍, 刘晓峰, 高秋彬, 刘正宣, 金立强, 孙韶辉. 基于人工智能的大规模天线信道状态信息反馈研究[J]. 电信科学, 2022, 38(3): 74-83. |
[10] | 邹璐珊, 黄晓雯, 杨敬民, 郑艺峰, 张光林, 张文杰. 移动边缘计算中资源分配和定价方法综述[J]. 电信科学, 2022, 38(3): 113-132. |
[11] | 绳韵, 许晨, 郑光远. 基于NOMA的超密集MEC网络任务卸载和资源分配方案[J]. 电信科学, 2022, 38(2): 35-46. |
[12] | 朱明伟. 网络智能化中的AI工程化技术方案[J]. 电信科学, 2022, 38(2): 157-165. |
[13] | 杨震, 赵建军, 黄勇军, 李洁, 陈楠. 基于网络演进的人工智能技术方向研究[J]. 电信科学, 2022, 38(12): 27-34. |
[14] | 程瑞营, 张攀, 肖雨, 乔宇杰, 张安奕. 基于时序数据的云网协同平台人工智能运维体系[J]. 电信科学, 2022, 38(11): 24-35. |
[15] | 陈志宏, 王明晓. 计算机视觉在智慧安防中的应用[J]. 电信科学, 2021, 37(8): 142-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|