电信科学 ›› 2021, Vol. 37 ›› Issue (6): 55-65.doi: 10.11959/j.issn.1000-0801.2021128
孙茜1,2,3, 田霖1,2,3, 周一青1,2,3, 冯晨1,2,3, 王园园1,2,3, 周继华4
修回日期:
2021-06-10
出版日期:
2021-06-20
发布日期:
2021-06-01
作者简介:
孙茜(1990- ),女,博士,中国科学院计算技术研究所助理研究员,主要研究方向为移动通信和无线计算资源分配基金资助:
Qian SUN1,2,3, Lin TIAN1,2,3, Yiqing ZHOU1,2,3, Chen FENG1,2,3, Yuanyuan WANG1,2,3, Jihua ZHOU4
Revised:
2021-06-10
Online:
2021-06-20
Published:
2021-06-01
Supported by:
摘要:
随着时延敏感的计算密集型任务呈指数级增长,5G以及未来6G的移动蜂窝网络将构建面向边缘计算的网络切片为时延敏感、计算密集型应用提供服务。由于网络切片间共享系统资源,无线与边缘计算资源的高效管理至关重要。对网络切片生命周期中资源管理的需求进行了研究,针对资源需求归纳了网络切片接入控制技术、网络切片资源分配技术、网络切片终端协作激励技术的研究进展,并给出了这 3 方面技术的未来研究方向,实现了面向边缘计算的网络切片的资源高效管理。
中图分类号:
孙茜, 田霖, 周一青, 冯晨, 王园园, 周继华. 面向B5G和6G的边缘计算与网络切片资源管理[J]. 电信科学, 2021, 37(6): 55-65.
Qian SUN, Lin TIAN, Yiqing ZHOU, Chen FENG, Yuanyuan WANG, Jihua ZHOU. Resource management in sliced networks with mobile edge computing for B5G and 6G[J]. Telecommunications Science, 2021, 37(6): 55-65.
[1] | PEREZ M , XU S , CHAUHAN S ,et al. Impact of delay on telesurgical performance:study on the robotic simulator dV-Trainer[J]. International Journal of Computer Assisted Radiology & Surgery, 2016,11(4): 581-587. |
[2] | PAWANI P , JUDE O , MADHUCSANKA L ,et al. Survey on multi-access edge computing for Internet of Things realization[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2961-2991. |
[3] | MAO Y , YOU C , ZHANG J ,et al. A survey on mobile edge computing:the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017,19(4): 2322-2358. |
[4] | 3GPP. Study on new radio access technology:radio access architecture and interfaces V14.0.0:TR 38.801[S]. 2017. |
[5] | GILBERT T . $1.4tn of benefits in 2030:5G’s impact on industry verticals[R]. 2019. |
[6] | KALOXYLOS . A survey and an analysis of network slicing in 5G networks[J]. IEEE Communications Standards Magazine, 2018,2(1): 60-65. |
[7] | ZHANG S . An overview of network slicing for 5G[J]. IEEE Wireless Communications, 2019,26(3): 111-117. |
[8] | WANG F , XU J , WANG X ,et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017,17(3): 1784-1797. |
[9] | DINH T Q , TANG J , LA Q D ,et al. Offloading in mobile edge computing:task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017,65(8): 3571-3584. |
[10] | CHEN M , HAO Y . Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018,36(3): 587-597. |
[11] | WANG S , ZHANG X , YAN Z ,et al. Cooperative edge computing with sleep control under non-uniform traffic in mobile edge networks[J]. IEEE Internet of Things Journal, 2018,6(3): 4295-4306. |
[12] | SUN Q , TIAN L , SHI J ,et al. Joint management of communicating and computing resources in sliced 5G networks[C]// Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-6. |
[13] | KOKKU R , MAHINDRA R , ZHANG H ,et al. NVS:a substrate for virtualizing wireless resources in cellular networks[J]. IEEE/ACM Transactions on Networking, 2012,20(5): 1333-1346. |
[14] | GUO T , ARNOTT R . Active LTE RAN sharing with partial resource reservation[C]// Proceedings of 2013 IEEE 78th Vehicular Technology Conference (VTC Fall). Piscataway:IEEE Press, 2013: 1-5. |
[15] | FERRUS R , SALLENT O , PEREZ-ROMERO J ,et al. On 5G radio access network slicing:radio interface protocol features and configuration[J]. IEEE Communications Magazine, 2018,56(5): 184-192. |
[16] | CHEN J L , MA Y W , KUO H Y ,et al. Enterprise visor:a Software-Defined enterprise network resource management engine[C]// Proceedings of 2014 IEEE/SICE International Symposium on System Integration. Piscataway:IEEE Press, 2014: 381-384. |
[17] | ZHANG H , LIU N , CHU X ,et al. Network slicing based 5G and future mobile networks:mobility,resource management,and challenges[J]. IEEE Communications Magazine, 2017,55(8): 138-145. |
[18] | LEE Y L , LOO J , CHUAH T C ,et al. Dynamic network slicing for multitenant heterogeneous cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018,17(4): 2146-2161. |
[19] | TANG L , ZHANG X , XIANG H ,et al. Joint resource allocation and caching placement for network slicing in fog radio access networks[C]// Proceedings of 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE Press, 2017: 1-6. |
[20] | XU Q , WANG J , WU K . Learning-based dynamic resource provisioning for network slicing with ensured end-to-end performance bound[J]. IEEE Transactions on Network Science &Engineering, 2018,7(1): 28-41. |
[21] | KAZMI S M A , TRAN N H , HO T M ,et al. Hierarchical matching game for service selection and resource purchasing in wireless network virtualization[J]. IEEE Communications Letters, 2018,22(1): 121-124. |
[22] | JIANG M , CONDOLUCI M , MAHMOODI T . Network slicing in 5G:an auction-based model[C]// Proceedings of 2017 IEEE International Conference on Communications (ICC). Piscata-way:IEEE Press, 2017: 1-6. |
[23] | MALANCHINI I , VALENTIN S , AYDIN O . Generalized resource sharing for multiple operators in cellular wireless networks[C]// Proceedings of 2014 International Wireless Communications and Mobile Computing Conference (IWCMC). Piscataway:IEEE Press, 2014: 803-808. |
[24] | NGUYEN D H N , YANRU Z , ZHU H . Contract-based spectrum allocation for wireless virtualized networks[J]. IEEE Transactions on Wireless Communications, 2018,17(11): 7222-7235. |
[25] | SHEN Y , WEN X , WANG L ,et al. Physical resource management based on complex network theory in 5G network slice trading[C]// Proceedings of 2019 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2019: 1-6. |
[26] | MACH P , BECVAR Z . Mobile edge computing:a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1628-1656. |
[27] | LIU J , MAO Y , ZHANG J ,et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]// Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT). Piscataway:IEEE Press, 2016: 1451-1455. |
[28] | JIA M , CAO J , LIANG W . Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks[J]. IEEE Transactions on Cloud Computing, 2017,5(4): 725-737. |
[29] | TRAN T X , POMPILI D . Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019,68(1): 856-868. |
[30] | SARDELLITTI S , SCUTARI G , BARBAROSSA S . Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal & Information Processing over Networks, 2015,1(2): 89-103. |
[31] | WANG C , LIANG C , YUV F R ,et al. Joint computation offloading,resource allocation and content caching in cellular networks with mobile edge computing[C]// Proceedings of 2017 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2017: 1-6. |
[32] | XU C , WENZHONG L , SANGLU L ,et al. Efficient resource allocation for on-demand mobile-edge cloud computing[J]. IEEE Transactions on Vehicular Technology, 2018,67(9): 8769-8780. |
[33] | WANG C , YU F , LIANG C ,et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017,66(8): 7432-7445. |
[34] | WANG J , ZHAO L , LIU J ,et al. Smart resource allocation for mobile edge computing:a deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computing, 2019: 1-17. |
[35] | WANG Y , TAO X , HOU Y T ,et al. Effective capacity-based resource allocation in mobile edge computing with two-stage tandem queues[J]. IEEE Transactions on Communications, 2019,67(9): 6221-6233. |
[36] | GUO J , SONG Z , CUI Y ,et al. Energy-efficient resource allocation for multi-user mobile edge computing[C]// Proceedings of GLOBECOM 2017 - 2017 IEEE Global Communications Conference. Piscataway:IEEE Press, 2017: 1-7. |
[37] | WANG X , WANG K , WU S ,et al. Dynamic resource scheduling in mobile edge cloud with cloud radio access network[J]. IEEE Transactions on Parallel and Distributed Systems, 2018,29(11): 2429-2445. |
[38] | ZHOU Z , MA G , XU C ,et al. Energy-efficient resource allocation in cognitive D2D communications:a game-theoretical and matching approach[C]// Proceedings of 2016 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2016: 1-6. |
[39] | SUN Q , TIAN L , ZHOU Y ,et al. Semi-dynamic computing resource allocation in MEC-enabled radio access networks[C]// Proceedings of 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[40] | SUN Q , TIAN L , ZHOU Y ,et al. Energy efficient incentive resource allocation in D2D cooperative communications[C]// Proceedings of 2015 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2015: 2632-2637. |
[41] | ZHANG Q , GUI L , TIAN F ,et al. A caching-based incentive mechanism for cooperative data offloading[C]// Proceedings of 2017 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2017: 1376-1381. |
[42] | FANG Y , ZHOU Y , JIANG X ,et al. Game theoretic D2D content sharing:joint participants selection,routing and pricing[C]// Proceedings of 2017 26th International Conference on Computer Communication and Networks (ICCCN). Piscataway:IEEE Press, 2017: 1-9. |
[43] | ZHANG A , ZHOU L , WANG L . QoE-driven scheme for multimedia content dissemination in Device-to-Device communication[C]// Proceedings of 2014 International Wireless Communications and Mobile Computing Conference (IWCMC). Piscataway:IEEE Press, 2014: 785-790. |
[44] | HE Z , ZEHUA W , QINGHE D . Social-aware D2D relay networks for stability enhancement:an optimal stopping approach[J]. IEEE Transactions on Vehicular Technology, 2018,67(9): 8860-8874. |
[45] | DAN W , LIANG Z , YUEMING C ,et al. Optimal content sharing mode selection for social-aware D2D communications[J]. IEEE Wireless Communications Letters, 2018,7(6): 910-913. |
[46] | WU D , ZHOU L , CAI Y . Social-aware rate based content sharing mode selection for D2D content sharing scenarios[J]. IEEE Transactions on Multimedia, 2017,19(11): 2571-2582. |
[47] | XU H , XU W , YANG Z ,et al. Pilot reuse among D2D users in D2D underlaid massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2018,67(1): 467-482. |
[48] | LIU G , YU F R , JI H ,et al. In-band full-duplex relaying:a survey,research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2017,17(2): 500-524. |
[49] | SUN Q , TIAN L , ZHOU Y ,et al. A two-layered incentive scheme for cooperation in sliced 5G D2D networks[J]. IEEE Transactions on Vehicular Technology, 2020,69(11): 13289-13304. |
[50] | SUN Q , TIAN L , ZHOU Y ,et al. Incentive scheme for slice cooperation based on D2D communication in 5G networks[J]. China Communications, 2020,17(1): 28-41. |
[1] | 刘建国, 渠灏, 黄红明, 朱智丹. IPv6+智能骨干网络技术研究[J]. 电信科学, 2023, 39(5): 155-166. |
[2] | 张志龙, 张天琦, 李雪菲, 刘丹谱. 基于计算控制通信融合的车联网资源协同优化技术研究[J]. 电信科学, 2023, 39(4): 17-30. |
[3] | 王淑玲, 孙杰, 王鹏, 杨爱东. 云边协同中的资源调度优化[J]. 电信科学, 2023, 39(2): 163-170. |
[4] | 王帅, 陈丹, 肖羽. 5G行业专网对外服务能力研究[J]. 电信科学, 2022, 38(Z1): 143-148. |
[5] | 沈鸿, 崔凌, 张天魁. 面向智能制造的5G网络部署方案研究[J]. 电信科学, 2022, 38(Z1): 158-163. |
[6] | 顾博, 敖婷. 基于MEC的定位技术在车联网中的应用[J]. 电信科学, 2022, 38(Z1): 250-258. |
[7] | 伏玉笋, 唐金辉. 使能未来工厂的5G能力综述[J]. 电信科学, 2022, 38(9): 18-35. |
[8] | 张天魁, 徐瑜, 刘元玮, 杨鼎成, 任元红. 无人机辅助MEC系统:架构、关键技术与未来挑战[J]. 电信科学, 2022, 38(8): 3-16. |
[9] | 邢文娟, 雷波, 赵倩颖. 算力基础设施发展现状与趋势展望[J]. 电信科学, 2022, 38(6): 51-61. |
[10] | 邓平科, 张同须, 施南翔, 张童, 邵天竺, 郑韶雯. 星算网络——空天地一体化算力融合网络新发展[J]. 电信科学, 2022, 38(6): 71-81. |
[11] | 冯晓丽, 刘晨, 张丽伟, 王晓韵. 基于5G MEC的智慧化园区解决方案[J]. 电信科学, 2022, 38(5): 54-63. |
[12] | 邹璐珊, 黄晓雯, 杨敬民, 郑艺峰, 张光林, 张文杰. 移动边缘计算中资源分配和定价方法综述[J]. 电信科学, 2022, 38(3): 113-132. |
[13] | 绳韵, 许晨, 郑光远. 基于NOMA的超密集MEC网络任务卸载和资源分配方案[J]. 电信科学, 2022, 38(2): 35-46. |
[14] | 刘云毅, 张建敏, 冯晓丽, 张丽伟. 5G MEC系统安全能力部署方案[J]. 电信科学, 2022, 38(11): 143-152. |
[15] | 张小建, 费稼轩, 姜海涛, 姚启桂. 电力5G混合组网的安全风险分析[J]. 电信科学, 2022, 38(1): 132-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|