电信科学 ›› 2022, Vol. 38 ›› Issue (2): 1-17.doi: 10.11959/j.issn.1000-0801.2022025
• 综述 • 下一篇
李攀攀1, 谢正霞2, 乐光学1, 刘鑫3
修回日期:
2022-02-04
出版日期:
2022-02-20
发布日期:
2022-02-01
作者简介:
李攀攀(1983- ),男,博士,嘉兴学院讲师,主要研究方向为智能通信、深度学习、网络空间安全等基金资助:
Panpan LI1, Zhengxia XIE2, Guangxue YUE1, Xin LIU3
Revised:
2022-02-04
Online:
2022-02-20
Published:
2022-02-01
Supported by:
摘要:
随着无线通信应用边界的不断扩展,无线通信应用环境也日趋复杂多样,面临射频损伤、信道衰落、干扰和噪声等负面影响,给接收端恢复原始信息带来挑战。借鉴深度学习方法在计算机视觉、模式识别、自然语言处理等领域取得的研究成果,基于深度学习的无线通信接收技术受到学术界和产业界的广泛关注。首先阐述了国内外基于深度学习无线通信接收技术的研究现状;接着概述了信号大数据背景下无线通信接收所面临的技术挑战,并提出基于深度神经网络的无线通信智能接收参考架构;最后探讨了信号大数据背景下无线通信智能接收方法的发展趋势。为基于深度学习无线通信技术的研究和发展提供借鉴。
中图分类号:
李攀攀, 谢正霞, 乐光学, 刘鑫. 基于深度学习的无线通信接收方法研究进展与趋势[J]. 电信科学, 2022, 38(2): 1-17.
Panpan LI, Zhengxia XIE, Guangxue YUE, Xin LIU. Research progress and trends of deep learning based wireless communication receiving method[J]. Telecommunications Science, 2022, 38(2): 1-17.
[5] | WANG T Q , WEN C K , WANG H Q ,et al. Deep learning for wireless physical layer:opportunities and challenges[J]. China Communications, 2017,14(11): 92-111. |
[6] | WANG F X , ZHANG M , WANG X X ,et al. Deep learning for edge computing applications:a state-of-the-art survey[J]. IEEE Access, 2020(8): 58322-58336. |
[7] | 尤肖虎, 张川, 谈晓思 ,等. 基于AI的5G技术:研究方向与范例[J]. 中国科学:信息科学, 2018,48(12): 1589-1602. |
YOU X H , ZHANG C , TAN X S ,et al. AI for 5G:research directions and paradigms[J]. Scientia Sinica (Informationis), 2018,48(12): 1589-1602. | |
[8] | SALH A , AUDAH L , SHAH N S M ,et al. A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems[J]. IEEE Access, 2021(9): 55098-55131. |
[9] | MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2595-2621. |
[10] | 张静, 金石, 温朝凯 ,等. 基于人工智能的无线传输技术最新研究进展[J]. 电信科学, 2018,34(8): 46-55. |
ZHANG J , JIN S , WEN C K ,et al. An overview of wireless transmission technology utilizing artificial intelligence[J]. Telecommunications Science, 2018,34(8): 46-55. | |
[11] | HEH T , JIN S , WENC K ,et al. Model-driven deep learning for physical layer communications[J]. IEEE Wireless Communications, 2019,26(5): 77-83. |
[12] | QIN Z J , YE H , LI G Y ,et al. Deep learning in physical layer communications[J]. IEEE Wireless Communications, 2019,26(2): 93-99. |
[13] | LEE W , JO O , KIM M . Application of end-to-end deep learning in wireless communications systems[J]. arXiv preprint arXiv:1808.02394, 2018. |
[14] | 彭德义 . 基于机器学习的 5G无线通信物理层关键技术研究[J]. 湖南工程学院学报(自然科学版), 2019,29(3): 37-43. |
PENG D Y . Research for key technology of 5G wireless network PHY based on machine learning[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2019,29(3): 37-43. | |
[15] | 高向堃 . 基于深度学习的物理层无线通信技术机遇与挑战[J]. 中国新通信, 2019,21(14): 96. |
GAO X K . Opportunities and challenges of deep learning based physical layer wireless communication techniques[J]. China New Telecommunications, 2019,21(14): 96. | |
[16] | ZHANG C Y , PATRAS P , HADDADI H . Deep learning in mobile and wireless networking:a survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(3): 2224-2287. |
[17] | ZHENG S L , CHEN S C , YANG X N . DeepReceiver:a deep learning-based intelligent receiver for wireless communications in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,7(1): 5-20. |
[18] | 刘留, 张建华, 樊圆圆 ,等. 机器学习在信道建模中的应用综述[J]. 通信学报, 2021,42(2): 134-153. |
[1] | RESTUCCIA F , MELODIA T . Physical-layer deep learning:challenges and applications to 5G and beyond[J]. arXiv preprint arXiv:2004.10113, 2020. |
[2] | 谢维信, 陈曾平, 裴继红 ,等. 大数据背景下的信号处理[J]. 中国科学:信息科学, 2013,43(12): 1525-1546. |
[18] | LIU L , ZHANG J H , FAN Y Y ,et al. Survey of application of machine learning in wireless channel modeling[J]. Journal on Communications, 2021,42(2): 134-153. |
[19] | 王承祥, 黄杰, 王海明 ,等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020,4(1): 19-32. |
[2] | XIE W X , CHEN Z P , PEI J H ,et al. Signal processing in the context of big data[J]. Scientia Sinica (Informationis), 2013,43(12): 1525-1546. |
[3] | 章坚武, 王路鑫, 孙玲芬 ,等. 人工智能在5G系统中的应用综述[J]. 电信科学, 2021,37(5): 14-31. |
[19] | WANG C X , HUANG J , WANG H M ,et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese Journal on Internet of Things, 2020,4(1): 19-32. |
[20] | NEUMANN D , WIESE T , UTSCHICK W . Learning the MMSE channel estimator[J]. IEEE Transactions on Signal Processing, 2018,66(11): 2905-2917. |
[3] | ZHANG J W , WANG L X , SUN L F ,et al. An survey on application of artificial intelligence in 5G system[J]. Telecommunications Science, 2021,37(5): 14-31. |
[4] | 夏明华, 朱又敏, 陈二虎 ,等. 海洋通信的发展现状与时代挑战[J]. 中国科学:信息科学, 2017,47(6): 677-695. |
[21] | GIZZINI A K , CHAFII M , NIMR A ,et al. Adaptive channel estimation based on deep learning[C]// Proceedings of 2020 IEEE 92nd Vehicular Technology Conference. Piscataway:IEEE Press, 2020: 1-5. |
[22] | BAI Q B , WANG J T , ZHANG Y ,et al. Deep learning-based channel estimation algorithm over time selective fading channels[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,6(1): 125-134. |
[23] | YANG Y W , GAO F F , MA X L ,et al. Deep learning-based channel estimation for doubly selective fading channels[J]. IEEE Access, 2019(7): 36579-36589. |
[24] | SOLTANI M , POURAHMADI V , MIRZAEI A ,et al. Deep learning-based channel estimation[J]. IEEE Communications Letters, 2019,23(4): 652-655. |
[25] | MAO H X , LU H C , LU Y J ,et al. RoemNet:robust meta learning based channel estimation in OFDM systems[C]// Proceedings of ICC 2019 - 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6. |
[26] | 廖勇, 花远肖, 姚海梅 . 基于深度学习的OFDM信道估计[J]. 重庆邮电大学学报(自然科学版), 2019,31(3): 348-353. |
LIAO Y , HUA Y X , YAO H M . Channel estimation based on deep learning for OFDM systems[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2019,31(3): 348-353. | |
[27] | O’SHEA T J , ROY T , WEST N . Approximating the void:learning stochastic channel models from observation with variational generative adversarial networks[C]// Proceedings of 2019 International Conference on Computing,Networking and Communications (ICNC). Piscataway:IEEE Press, 2019: 681-686. |
[28] | ZAMANIPOUR M . A survey on deep-learning based techniques for modeling and estimation of massive MIMO channels[J]. arXiv preprint arXiv:1910.03390, 2019. |
[29] | HUANG H J , YANG J , HUANGH ,et al. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system[J]. IEEE Transactions on Vehicular Technology, 2018,67(9): 8549-8560. |
[30] | MEHRABI M , MOHAMMADKARIMI M , ARDAKANI M ,et al. Decision directed channel estimation based on deep neural network k-step predictor for MIMO communications in 5G[J]. IEEE Journal on Selected Areas in Communications, 2019,37(11): 2443-2456. |
[31] | 廖勇, 花远肖, 姚海梅 ,等. 高速移动环境下基于深度学习的信道估计方法[J]. 电子学报, 2019,47(8): 1701-1707. |
LIAO Y , HUA Y X , YAO H M ,et al. Channel estimation method based on deep learning in high-speed mobile environments[J]. Acta Electronica Sinica, 2019,47(8): 1701-1707. | |
[32] | METZLER C , MOUSAVI A , BARANIUK R . Learned D-AMP:principled neural network based compressive image recovery[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems 2017. New York:ACM Press, 2017: 1772-1783. |
[33] | HE H T , WEN C K , JIN S ,et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018,7(5): 852-855. |
[34] | ZHANG K , ZUO W M , CHEN Y J ,et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017,26(7): 3142-3155. |
[35] | YE H Y , GAO FF , QIAN J ,et al. Deep learning-based denoise network for CSI feedback in FDD massive MIMO systems[J]. IEEE Communications Letters, 2020,24(8): 1742-1746. |
[36] | GUO J J , WEN C K , JIN S . Deep learning-based CSI feedback for beamforming in single- and multi-cell massive MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2021,39(7): 1872-1884. |
[37] | SUN YY , XU W , FAN L S ,et al. AnciNet:an efficient deep learning approach for feedback compression of estimated CSI in massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020,9(12): 2192-2196. |
[38] | LU Z L , WANG J T , SONG J . Binary neural network aided CSI feedback in massive MIMO system[J]. IEEE Wireless Communications Letters, 2021,10(6): 1305-1308. |
[39] | SUN Y Y , XU W , LIANG L ,et al. A lightweight deep network for efficient CSI feedback in massive MIMO systems[J]. IEEE Wireless Communications Letters, 2021,10(8): 1840-1844. |
[40] | CHEN S , GIBSON G J , COWAN C F N ,et al. Adaptive equalization of finite non-linear channels using multilayer perceptrons[J]. Signal Processing, 1990,20(2): 107-119. |
[41] | PATRA J C , PAL R N . A functional link artificial neural network for adaptive channel equalization[J]. Signal Processing, 1995,43(2): 181-195. |
[42] | CHANG P R , WANG B C . Adaptive decision feedback equalization for digital satellitechannels using multilayer neural networks[J]. IEEE Journal on Selected Areas in Communications, 1995,13(2): 316-324. |
[43] | PATRA J C , POH W B , CHAUDHARI N S ,et al. Nonlinear channel equalization with QAM signal using Chebyshev artificial neural network[C]// Proceedings of 2005 IEEE International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2005: 3214-3219. |
[44] | KLAUTAU A , GONZáLEZ-PRELCIC N , MEZGHANI A ,et al. Detection and channel equalization with deep learning for low resolution MIMO systems[C]// Proceedings of 2018 52nd Asilomar Conference on Signals,Systems,and Computers. Piscataway:IEEE Press, 2018: 1836-1840. |
[45] | CARRERA D F , VARGAS-ROSALES C , YUNGAICELANAULA N M ,et al. Comparative study of artificial neural network based channel equalization methods for mmWave communications[J]. IEEE Access, 2021(9): 41678-41687. |
[46] | 杨旸, 李扬, 周明拓 . 基于数据驱动深度学习方法的无线信道均衡[J]. 中兴通讯技术, 2018,24(2): 25-29. |
YANG Y , LI Y , ZHOU M T . The wireless channel equalization based on data-driven deep learning method[J]. ZTE Technology Journal, 2018,24(2): 25-29. | |
[47] | KUMARI S , SRINIVAS K K , KUMAR P . Channel and carrier frequency offset equalization for OFDM based UAV communications using deep learning[J]. IEEE Communications Letters, 2020,25(3): 850-853. |
[48] | FANG L T , WU L N . Deep learning detection method for signal demodulation in short range multipath channel[C]// Proceedings of 2017 IEEE 2nd International Conference on Opto-Electronic Information Processing. Piscataway:IEEE Press, 2017: 16-20. |
[49] | OUYANG X C , WU L N . Faster-than-Nyquist rate communication via convolutional neural networks-based demodulators[J]. Journal of Southeast University (English Edition), 2016,32(1): 6-10. |
[50] | MOHAMMAD A S , REDDY N , JAMES F ,et al. Demodulation of faded wireless signals using deep convolutional neural networks[C]// Proceedings of 2018 IEEE 8th Annual Computing and Communication Workshop and Conference. Piscataway:IEEE Press, 2018: 969-975. |
[51] | QI P H , ZHOU X Y , ZHENG S L ,et al. Automatic modulation classification based on deep residual networks with multimodal information[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,7(1): 21-33. |
[52] | WANG Y , GUI J , YIN Y ,et al. Automatic modulation classification for MIMO systems via deep learning and zero-forcing equalization[J]. IEEE Transactions on Vehicular Technology, 2020,69(5): 5688-5692. |
[53] | 黄媛媛, 张剑, 周兴建 ,等. 应用深度学习的信号解调[J]. 电讯技术, 2017,57(7): 741-744. |
HUANG Y Y , ZHANG J , ZHOU X J ,et al. Demodulation with deep learning[J]. Telecommunication Engineering, 2017,57(7): 741-744. | |
[54] | 杨耀栋, 吴乐南 . 相移键控信号的深度神经网络解调器[J]. 电子测量与仪器学报, 2018,32(4): 144-150. |
YANG Y D , WU L N . Realization of SSAE demodulator of MPPSK communication system[J]. Journal of Electronic Measurement and Instrumentation, 2018,32(4): 144-150. | |
[55] | JI X F , WANG J , LI Y ,et al. Modulation recognition in maritime multipath channels:a blind equalization-aided deep learning approach[J]. China Communications, 2020,17(3): 12-25. |
[56] | HANNA S , DICK C , CABRIC D . Signal processing based deep learning for blind symbol decoding and modulation classification[J]. arXiv preprint arXiv:2106.10543, 2021. |
[57] | SHENTAL O , HOYDIS J . “Machine LLRning”:learning to softly demodulate[J]. arXiv preprint arXiv:1907.01512, 2019. |
[58] | PENG S L , JIANG H Y , WANG H X ,et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,30(3): 718-727. |
[59] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenetclassification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems.[S.l.:s.n.], 2012: 1097-1105. |
[60] | SZEGEDY C , LIU W , JIA Y Q ,et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 1-9. |
[61] | 陈铮, 彭盛亮, 李焕焕 ,等. 基于深度学习与软件无线电的盲解调系统研究[J]. 信号处理, 2019,35(4): 649-655. |
CHEN Z , PENG S L , LI H H ,et al. Research on blind demodulation system based on deep learning and software defined radio[J]. Journal of Signal Processing, 2019,35(4): 649-655. | |
[62] | CHEN J Y , CUI H , MIAO S H ,et al. FEM:Feature extraction and mapping for radio modulation classification[J]. Physical Communication, 2021,45: 101279. |
[63] | PEREZ-CRUZ F , MURILLO-FUENTES J J , CARO S . Nonlinear channel equalization with Gaussian processes for regression[J]. IEEE Transactions on Signal Processing, 2008,56(10): 5283-5286. |
[64] | OLMOS P M , MURILLO-FUENTES J J , PEREZ-CRUZ F , . Joint nonlinear channel equalization and soft LDPC decoding with Gaussian processes[J]. IEEE Transactions on Signal Processing, 2009,58(3): 1183-1192. |
[65] | GRUBER T , CAMMERER S , HOYDIS J ,et al. On deep learning-based channel decoding[C]// Proceedings of 2017 51st Annual Conference on Information Sciences and Systems (CISS). Piscataway:IEEE Press, 2017: 1-6. |
[66] | NACHMANI E , BACHAR Y , MARCIANO E ,et al. Nearmaximum likelihood decoding with deep learning[J]. arXiv preprint arXiv:1801.02726, 2018. |
[67] | NACHMANI E , BE'ERY Y , BURSHTEIN D . Learning to decode linear codes using deep learning[C]// Proceedings of 2016 54th Annual Allerton Conference on Communication,Control,and Computing (Allerton). Piscataway:IEEE Press, 2016: 341-346. |
[68] | LIANG F , SHEN C , WU F . An iterative BP-CNN architecture for channel decoding[J]. IEEE Journal of Selected Topics in Signal Processing, 2018,12(1): 144-159. |
[69] | 潘睿, 袁磊 . 脉冲信道下基于深度学习的BP译码方法[J]. 系统工程与电子技术, 2020,42(9): 2116-2122. |
PAN R , YUAN L . BP decoding method based on deep learning in impulsive channels[J]. Systems Engineering and Electronics, 2020,42(9): 2116-2122. | |
[70] | DENG C H , YUANS B L . Reduced-complexity deep neural network-aided channel code decoder:a case study for BCH decoder[C]// Proceedings of ICASSP 2019-2019 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2019: 1468-1472. |
[71] | LUGOSCH L , GROSS W J . Neural offset min-sum decoding[C]// Proceedings of 2017 IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2017: 1361-1365. |
[72] | NACHMANI E , MARCIANO E , LUGOSCH L ,et al. Deep learning methods for improved decoding of linear codes[J]. IEEE Journal of Selected Topics in Signal Processing, 2018,12(1): 119-131. |
[73] | FUJIHASHI T , KOIKE-AKINO T , WATANABE T ,et al. Nonlinear equalization with deep learning for multi-purpose visual MIMO communications[C]// Proceedings of 2018 IEEE International Conference on Communications. Piscataway:IEEE Press, 2018: 1-6. |
[74] | CAMMERER S , GRUBER T , HOYDIS J ,et al. Scaling deep learning-based decoding of polar codes via partitioning[C]// Proceedings of GLOBECOM 2017-2017 IEEE Global Communications Conference. Piscataway:IEEE Press, 2017: 1-6. |
[75] | O’SHEA T , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017,3(4): 563-575. |
[76] | YE H , LI G Y . Initial results on deep learning for joint channel equalization and decoding[C]// Proceedings of 2017 IEEE 86th Vehicular Technology Conference. Piscataway:IEEE Press, 2017: 1-5. |
[77] | YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018,7(1): 114-117. |
[78] | FARSAD N , GOLDSMITH A . Neural network detection of data sequences in communication systems[J]. IEEE Transactions on Signal Processing, 2018,66(21): 5663-5678. |
[79] | GAO X X , JIN S , WEN C K ,et al. ComNet:combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018,22(12): 2627-2630. |
[80] | LIN G S , MILAN A , SHEN C H ,et al. RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 5168-5177. |
[81] | GRAVES A , SCHMIDHUBER J . Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005,18(5/6): 602-610. |
[82] | XU W H , ZHONG Z W , BE'ERY Y ,et al. Joint neural network equalizer and decoder[C]// Proceedings of 2018 15th International Symposium on Wireless Communication Systems (ISWCS). Piscataway:IEEE Press, 2018: 1-5. |
[83] | CACIULARU A , BURSHTEIN D . Unsupervised linear and nonlinear channel equalization and decoding using variational autoencoders[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,6(3): 1003-1018. |
[84] | O'SHEA T J , ERPEK T , CLANCY T C . Deep learning based MIMO communications[J]. arXiv preprint arXiv:1707.07980, 2017. |
[85] | ALAMOUTI S M . A simple transmit diversity technique for wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1998,16(8): 1451-1458. |
[86] | CHENG X , LIU D J , WANG C ,et al. Deep learning-based channel estimation and equalization scheme for FBMC/OQAM systems[J]. IEEE Wireless Communications Letters, 2019,8(3): 881-884. |
[87] | 汪周飞, 袁伟娜 . 基于深度学习的多载波系统信道估计与检测[J]. 浙江大学学报(工学版), 2020,54(4): 732-738. |
WANG Z F , YUAN W N . Channel estimation and detection method for multicarrier system based on deep learning[J]. Journal of Zhejiang University (Engineering Science), 2020,54(4): 732-738. | |
[88] | AOUDIA F A , HOYDIS J . End-to-end learning of communications systems without a channel model[C]// Proceedings of 2018 52nd Asilomar Conference on Signals,Systems,and Computers. Piscataway:IEEE Press, 2018: 298-303. |
[89] | ZHAO Z Y , VURAN M C , GUO F J ,et al. Deep-waveform:a learned OFDM receiver based on deep complex-valued convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2021,39(8): 2407-2420. |
[90] | YE H , LI G Y , JUANG B H F ,et al. Channel agnostic end-to-end learning based communication systems with conditional GAN[C]// Proceedings of 2018 IEEE Globecom Workshops. Piscataway:IEEE Press, 2018: 1-5. |
[91] | YE H , LIANG L , LI G Y ,et al. Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels[J]. IEEE Transactions on Wireless Communications, 2020,19(5): 3133-3143. |
[92] | ZHANG Y , DOSHI A , LISTON R ,et al. DeepWiPHY:deep learning-based receiver design and dataset for IEEE 802.11ax systems[J]. IEEE Transactions on Wireless Communications, 2020,20(3): 1596-1611. |
[93] | HONKALA M , KORPI D , HUTTUNEN J M J . DeepRx:fully convolutional deep learning receiver[J]. IEEE Transactions on Wireless Communications, 2021,20(6): 3925-3940. |
[94] | KORPI D , HONKALA M , HUTTUNEN J M J ,et al. DeepRx MIMO:convolutional MIMO detection with learned multiplicative transformations[J]. arXiv preprint arXiv:2010.16283, 2020. |
[95] | PIHLAJASALO J , KORPI D , HONKALA M ,et al. HybridDeepRx:deep learning receiver for high-EVM signals[J]. arXiv preprint arXiv:2106.16079, 2021. |
[96] | JIANG P , WANG T,HANB ,et al. Artificial intelligence-aided OFDM receiver:design and experimental results[J]. arXiv preprint arXiv:1812.06638, 2018. |
[97] | YE H , LI G Y , JUANG B H . Deep learning based end-to-end wireless communication systems without pilots[J]. IEEE Transactions on Cognitive Communications and Networking, 2021,7(3): 702-714. |
[98] | XIE H Q , QIN Z J , LI G Y ,et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021,69: 2663-2675. |
[4] | XIA M H , ZHU Y M , CHEN E H ,et al. The state of the art and challenges of marine communications[J]. Scientia Sinica (Informationis), 2017,47(6): 677-695. |
[99] | XU Z B , SUN J . Model-driven deep-learning[J]. National Science Review, 2018,5(1): 22-24. |
[1] | 卢敏, 胡娟, 张先超, 丁伟健, 乐光学. 基于用户多特征融合的个性化推荐模型[J]. 电信科学, 2023, 39(5): 101-115. |
[2] | 丁青锋, 王松. 高铁场景下联合天线与IOS单元选择的分布式IOS-SM传输方案[J]. 电信科学, 2023, 39(4): 31-42. |
[3] | 卢敏, 秦泽豪, 陈志辉, 张敏, 乐光学. 基于1D-Concatenate的信道估计DNN模型优化方法[J]. 电信科学, 2023, 39(4): 71-86. |
[4] | 蒋跃宇, 承昊新, 王康, 戴文骏, 刘笑宇. PLC-RF无线传输网络中的能效最优设计方法[J]. 电信科学, 2023, 39(4): 111-119. |
[5] | 许鸣睿, 姚玉才, 朱晓荣. 基于Fisco-Bcos平台的区块链系统性能精确分析模型[J]. 电信科学, 2023, 39(1): 79-91. |
[6] | 诸葛斌, 尹正虎, 斯文学, 颜蕾, 董黎刚, 蒋献. 基于学生知识追踪的多指标习题推荐算法[J]. 电信科学, 2022, 38(9): 129-143. |
[7] | 周杰, Esono Mikue Bernardo Esono, 王学英, 周惠婷, 罗宏. 基于SLM-PTS算法融合的NC-OFDM峰均比优化[J]. 电信科学, 2022, 38(7): 63-74. |
[8] | 戴亚盛, 马柏林, 乐光学. 复杂气象环境海上无线通信信道衰落估计模型[J]. 电信科学, 2022, 38(3): 158-171. |
[9] | 申情, 郭文宾, 楼俊钢, 余强国. 考虑多层次潜在特征的个性化推荐模型[J]. 电信科学, 2022, 38(2): 71-83. |
[10] | 陈志宏, 王明晓. 计算机视觉在智慧安防中的应用[J]. 电信科学, 2021, 37(8): 142-147. |
[11] | 唐博恒, 柴鑫刚. 基于云边协同的计算机视觉推理机制[J]. 电信科学, 2021, 37(5): 72-81. |
[12] | 孙姝君, 彭盛亮, 姚育东, 杨喜. 基于深度学习的调制识别综述[J]. 电信科学, 2021, 37(5): 82-90. |
[13] | 李楠楠, 韩瑜, 高宁, 金石. 基于幅度和相位联合分区的无线物理层密钥生成方法[J]. 电信科学, 2021, 37(5): 100-112. |
[14] | 彭双, 王晓东, 彭宗举, 陈芬. 基于深度学习的快速QTMT划分[J]. 电信科学, 2021, 37(4): 73-81. |
[15] | 胡道允, 齐进, 陆钱春, 李锋, 房红强. 基于深度学习的流量工程算法研究与应用[J]. 电信科学, 2021, 37(2): 107-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|