电信科学 ›› 2022, Vol. 38 ›› Issue (10): 140-152.doi: 10.11959/j.issn.1000-0801.2022050
柯颋1, 宋兴华2, 王飞1, 郭志恒2, 杨拓1, 郭春霞1, 韩成成2, 刘云峰2, 李振宇2
修回日期:
2022-03-15
出版日期:
2022-10-20
发布日期:
2022-10-01
作者简介:
柯颋(1982- ),男,博士,中国移动通信有限公司研究院高级工程师,主要从事 5G物理层标准研究等工作Ting KE1, Xinghua SONG2, Fei WANG1, Zhiheng GUO2, Tuo YANG1, Chunxia GUO1, Chengcheng HAN2, Yunfeng LIU2, Zhenyu LI2
Revised:
2022-03-15
Online:
2022-10-20
Published:
2022-10-01
摘要:
5G新型双工演进技术将在TDD频谱上引入基站侧子带不重叠全双工制式,以迎合万物智联和工业互联网对低时延和大上行吞吐量同时提出的更高要求,同时还需要进一步研究并解决基站间交叉时隙干扰问题,使能公网和专网采用不同的TDD上下行时隙配比的组网方式。为满足5G新型双工演进技术的未来部署需求,对TDD宏微异时隙组网和子带不重叠全双工制式的潜在部署场景和相关干扰特征进行了分析和研究,提出潜在可行的干扰抑制方案,并通过链路预算、仿真评估和样机验证等形式论证了技术可行性。
中图分类号:
柯颋, 宋兴华, 王飞, 郭志恒, 杨拓, 郭春霞, 韩成成, 刘云峰, 李振宇. 5G双工演进技术研究[J]. 电信科学, 2022, 38(10): 140-152.
Ting KE, Xinghua SONG, Fei WANG, Zhiheng GUO, Tuo YANG, Chunxia GUO, Chengcheng HAN, Yunfeng LIU, Zhenyu LI. Study on evolution of NR duplex operation[J]. Telecommunications Science, 2022, 38(10): 140-152.
表2
TDD基站收/发机架构下同信道基站间的子带内CLI抑制能力"
参数 | 站间距1 | 站间距2 | 站间距3 |
宏微基站间距/m | 50.0 | 100.0 | 200.0 |
工作频点/GHz | 4.9 | 4.9 | 4.9 |
信道模型 | UMa LOS | UMa LOS | UMa LOS |
室外空间传播损耗 | 79.2 | 85.8 | 92.4 |
穿透损(29.5)&阴影衰落(6)/dB | 35.5 | 35.5 | 35.5 |
室内路损/dB | 2.5 | 2.5 | 2.5 |
收/发天线阵列增益/dB | 20 | 20 | 20 |
防阻塞干扰抑制能力要求/dB | 65 | 65 | 65 |
防阻塞干扰抑制能力/dB | 97.2 | 103.8 | 110.4 |
总的干扰抑制能力要求/dB | 124 | 124 | 124 |
总的干扰抑制能力/dB | 97.2 | 103.8 | 110.4 |
表5
宏微基站间CLI链路预算"
参数 | 备注 | 站间距1 | 站间距2 | 站间距3 |
宏微基站间距/m | 50 | 100 | 200 | |
宏基站发送功率/dBm | 53 | 53 | 53 | |
宏基站发送天线阵列增益/dB | 20 | 20 | 20 | |
穿透损耗(29.5) & 阴影衰落(6)/dB | 35.5 | 35.5 | 35.5 | |
室外路损/dB | 3GPP UMa LOS信道 | 81.1 | 86.8 | 93.0 |
室内路损/dB | 2.5 | 2.5 | 2.5 | |
干扰强度I/dBm | (7)=(2)+(3)-(4)-(5)-(6) | -46.1 | -51.8 | -58.0 |
7 dB噪声指数下噪声功率N/dBm | -87 | -87 | -87 | |
干扰噪声比I/N/dB | (9)=(7)-(8) | 40.9 | 35.2 | 29.0 |
接收机灵敏度恶化/dB | 40.9 | 35.2 | 29.0 |
表7
仿真参数"
仿真配置参数 | 参数配置值 |
接入方式 | OFDMA |
帧结构 | TDD,宏基站:DDDSU,微基站:DSUUU |
载频 | 4.9 GHz |
ISD | 宏基站:300 m,微基站:20 m |
调制 | 最大到256QAM |
子载波间隔 | 30 kHz |
信道模型 | 宏基站:UMa(Urban Macro),微基站,IIOT(Industrial Internet of Things) |
UE分布 | 宏基站:80%室内3 km/h, 20% 室外30 km/h,微基站:100%室内3 km/h |
系统带宽 | 100 MHz |
天线配置 | 宏基站:BS@32TXRU,UE@4TXRU |
微基站:BS@4TXRU,UE@4TXRU | |
传输方案 | Macro:最大12流;Pico(6TRP协作):最大12流;SU:最大1流 |
调度粒度 | 4RB |
UE最大发送功率 | 26 dBm |
调度方案 | PF(proportional fair) |
接收机 | MMSE(minimum mean square error)-IRC(interference rejection combining) |
信道估计 | Ideal,Non-ideal,基线Ruu估计4RB,基于Muting RE估计的增强方案,Ruu估计粒度0.5RB |
功控参数 | P0=-60, alpha = 0.6 |
小区数 | 宏小区:3 , 微小区: 18 |
SRS 周期 | 10 TTI(transmission time interval) |
调度粒度 | 1 slot |
[1] | 中国移动研究院,华为. 5G大上行能力在行业数字化中的价值白皮书[R]. 2020. |
CMRI,Huawei. 5G大上行能力在行业数字化中的价值白皮书[R]. 2020. | |
[2] | 3GPP. Revised WID on cross link interference (CLI) handling and remote interference management (RIM) for NR:RP-182864[S]. 2018. |
[3] | ALVES H , RIIHONEN T , SURAWEERA H A . Full-duplex communications for future wireless networks[M]. Singapore: Springer Singapore, 2020. |
[4] | CRUICKSHANK D B . Implementing full duplexing for 5G[J]. Microwave Journal, 2020,63(5). |
[5] | KOLODZIEJ K E . In-band full-duplex wireless systems hand book[J]. Microwave Journal, 2021,64(5): 188. |
[6] | SABHARWAL A , SCHNITER P , GUO D N ,et al. In-band full-duplex wireless:challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014,32(9): 1637-1652. |
[7] | EVERETT E , SAHAI A , SABHARWAL A . Passive self- interference suppression for full-duplex infrastructure nodes[J]. IEEE Transactions on Wireless Communications, 2014,13(2): 680-694. |
[8] | HEINO M , KORPI D , HUUSARI T ,et al. Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays[J]. IEEE Communications Magazine, 2015,53(5): 91-101. |
[9] | EVERETT E , SHEPARD C , ZHONG L ,et al. SoftNull:many-antenna full-duplex wireless via digital beamforming[J]. IEEE Transactions on Wireless Communications, 2016,15(12): 8077-8092. |
[10] | KORPI D , ANTTILA L , SYRJ?L? V , ,et al. Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver[J]. IEEE Journal on Selected Areas in Communications, 2014,32(9): 1674-1687. |
[11] | VAN DEN BROEK D J , KLUMPERINK E A M , NAUTA B . An in-band full-duplex radio receiver with a passive vector modulator downmixer for self-interference cancellation[J]. IEEE Journal of Solid-State Circuits, 2015,50(12): 3003-3014. |
[12] | KORPI D , TAMMINEN J , TURUNEN M ,et al. Full-duplex mobile device:pushing the limits[J]. IEEE Communications Magazine, 2016,54(9): 80-87. |
[13] | VAN LIEMPD B , HERSHBERG B , ARIUMI S ,et al. A 70 dBm IIP3 electrical-balance duplexer for highly integrated tunable front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2016,64(12): 4274-4286. |
[14] | LAUGHLIN L , ZHANG C Q , BEACH M A ,et al. Tunable frequency-division duplex RF front end using electrical balance and active cancellation[J]. IEEE Transactions on Microwave Theory and Techniques, 2018,66(12): 5812-5824. |
[15] | CASTELLANO G , MONTANARI D , DE CARO D ,et al. An efficient digital background control for hybrid transformer-based receivers[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017,64(12): 3068-3080. |
[16] | DUARTE M , DICK C , SABHARWAL A . Experiment-driven characterization of full-duplex wireless systems[J]. IEEE Transactions on Wireless Communications, 2012,11(12): 4296-4307. |
[17] | JI H , KIM Y , MUHAMMAD K ,et al. Extending 5G TDD coverage with XDD:cross division duplex[J]. IEEE Access, 2021 (9): 51380-51392. |
[18] | 3GPP. New SI:study on evolution of NR duplex operation:RP-213591[S]. 2021. |
[19] | 3GPP. New SI:draft SID NR duplex evolution:RP-212707[S]. 2021. |
[20] | 3GPP. New SI:comments on Rel-18 draft SID on evolution of duplex operation:RP-213161[S]. 2021. |
[21] | 3GPP. Radio resource control (RRC) protocol specification (Release 16):TS 38.331[S]. 2021. |
[22] | 3GPP. Physical layer procedures for data (Release 16):TS 38.214[S]. 2021. |
[23] | 3GPP. Physical layer measurements (Release 16):TS 38.215[S]. 2021. |
[24] | 3GPP. Cross link interference (CLI) handling and remote interference management (RIM) for NR (Release 16):TR 38.828[S]. 2019. |
[25] | 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz (Release 16):TR 38.901[S]. 2019. |
[1] | 高凯辉, 李丹. 数据中心网络性能保障研究综述[J]. 电信科学, 2023, 39(6): 1-21. |
[2] | 李彧, 李召召, 吕平, 刘勤让. 全维可重构的多模态网络交换芯片架构设计[J]. 电信科学, 2023, 39(6): 22-32. |
[3] | 李炯, 胡宇翔, 崔鹏帅, 田乐, 董永吉. 面向多模态网络环境的网络模态增量式部署机制研究[J]. 电信科学, 2023, 39(6): 33-43. |
[4] | 郭泽华, 朱昊文, 徐同文. 面向分布式机器学习的网络模态创新[J]. 电信科学, 2023, 39(6): 44-51. |
[5] | 刘爱华, 骆汉光, 温建中, 占治国. 面向多模态网络的隔离转发技术研究[J]. 电信科学, 2023, 39(6): 52-60. |
[6] | 邹涛, 张慧峰, 高万鑫, 徐琪, 沈丛麒, 朱俊, 潘仲夏, 国兴昌. 面向智能制造的多模态网络应用技术研究[J]. 电信科学, 2023, 39(6): 61-72. |
[7] | 何耀宇, 张超. 面向无人机应用的低轨卫星通信技术适航分析[J]. 电信科学, 2023, 39(6): 96-104. |
[8] | 王甫镔, 孙士渊, 王梦辉, 杨昉, 王小斐, 宋健. 多光源可见光通信关键技术[J]. 电信科学, 2023, 39(5): 3-10. |
[9] | 马天洋, 陈雄斌, 徐义武. 基于可见光通信的零能耗光标签[J]. 电信科学, 2023, 39(5): 20-27. |
[10] | 刘思聪, 苏丹萍, 卫天阔, 王先耀. 基于多节点协作的鲁棒可见光智能定位[J]. 电信科学, 2023, 39(5): 28-41. |
[11] | 胡珈玮, 刘晓谦, 唐昕柯, 董宇涵. 基于DQN的UUV辅助水下无线光通信轨迹规划系统[J]. 电信科学, 2023, 39(5): 42-47. |
[12] | 刘晓谦, 唐昕柯, 董宇涵. 水下无线光MIMO链路空间信道建模[J]. 电信科学, 2023, 39(5): 48-56. |
[13] | 张嗣宏, 张健. 以ChatGPT为代表的生成式AI对通信行业的影响和应对思考[J]. 电信科学, 2023, 39(5): 67-75. |
[14] | 马晓亮, 刘英, 杜德泉, 安玲玲. 运营商智能客服的关键技术和发展趋势[J]. 电信科学, 2023, 39(5): 76-89. |
[15] | 唐鑫新, 曾学文, 凌致远, 宋磊. 可编程数据平面技术综述[J]. 电信科学, 2023, 39(4): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|