[1] |
CHATAUT R , AKL R . Massive MIMO systems for 5G and beyond networks-overview,recent trends,challenges,and future research direction[J]. Sensors (Basel,Switzerland), 2020,20(10): 2753.
|
[2] |
BJORNSON E , VAN DER PERRE L , BUZZI S ,et al. Massive MIMO in sub-6 GHz and mmWave:physical,practical,and use-case differences[J]. IEEE Wireless Communications, 2019,26(2): 100-108.
|
[3] |
陈山枝, 孙韶辉, 苏昕 ,等. 大规模天线波束赋形技术原理与设计[M]. 北京:人民邮电出版社, 2019.
|
|
CHEN S Z , SUN S H , SU X ,et al. Principles and design of massive beamforming technology[M]. Beijing: Posts & Telecom Press, 2019.
|
[4] |
3GPP. NR; Physical layer procedures for data (V17.0.0):TS 38.214[S]. 2021.
|
[5] |
KUO P H , KUNG H T , TING P G . Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays[C]// Proceedings of 2012 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2012: 492-497.
|
[6] |
SIM M S , PARK J , CHAE C B ,et al. Compressed channel feedback for correlated massive MIMO systems[J]. Journal of Communications and Networks, 2016,18(1): 95-104.
|
[7] |
GAO Z , DAI L L , WANG Z C ,et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J]. IEEE Transactions on Signal Processing, 2015,63(23): 6169-6183.
|
[8] |
CHEON H , PARK B , HONG D . Adaptive multicarrier system with reduced feedback information in wideband radio channels[C]// Proceedings of Gateway to 21st Century Communications Village,IEEE VTS 50th Vehicular Technology Conference (Cat.No.99CH36324). Piscataway:IEEE Press, 1999: 2880-2884.
|
[9] |
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018,7(1): 114-117.
|
[10] |
YANG Y W , GAO F F , LI G Y ,et al. Deep learning-based downlink channel prediction for FDD massive MIMO system[J]. IEEE Communications Letters, 2019,23(11): 1994-1998.
|
[11] |
KANG J M , CHUN C J , KIM I M . Deep-learning-based channel estimation for wireless energy transfer[J]. IEEE Communications Letters, 2018,22(11): 2310-2313.
|
[12] |
GUO J J , WEN C K , JIN S ,et al. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback:design,simulation,and analysis[J]. IEEE Transactions on Wireless Communications, 2020,19(4): 2827-2840.
|
[13] |
HSIEH C H , CHEN J Y , NIEN B H . Deep learning-based indoor localization using received signal strength and channel state information[J]. IEEE Access, 2019(17): 33256-33267.
|
[14] |
WANG T Q , WEN C K , WANG H Q ,et al. Deep learning for wireless physical layer:opportunities and challenges[J]. China Communications, 2017,14(11): 92-111.
|
[15] |
LU Z L , WANG J T , SONG J . Multi-resolution CSI feedback with deep learning in massive MIMO system[C]// Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
|
[16] |
LU Z L , WANG J T , SONG J . Binary neural network aided CSI feedback in massive MIMO system[J]. IEEE Wireless Communications Letters, 2021,10(6): 1305-1308.
|
[17] |
ZHANG Y Y , ZHANG X C , LIU Y . Deep learning based CSI compression and quantization with high compression ratios in FDD massive MIMO systems[J]. IEEE Wireless Communications Letters, 2021,10(10): 2101-2105.
|
[18] |
LIU Z Y , DEL ROSARIO M , DING Z . A Markovian model-driven deep learning framework for massive MIMO CSI feedback[J]. IEEE Transactions on Wireless Communications, 2022,21(2): 1214-1228.
|
[19] |
CAO Z , SHIH W T , GUO J J ,et al. Lightweight convolutional neural networks for CSI feedback in massive MIMO[J]. IEEE Communications Letters, 2021,25(8): 2624-2628.
|
[20] |
GAO M , LIAO T M , LU Y B . Fully connected feed forward neural networks based CSI feedback algorithm[J]. China Communications, 2021,18(1): 43-48.
|
[21] |
3GPP. RP-213560:New SI:study on artificial intelligence (AI)/machine learning (ML) for NR air interface[S]. 2021.
|
[22] |
WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018,7(5): 748-751.
|
[23] |
LIU Z Y , ZHANG L , DING Z . Exploiting Bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2019,8(3): 889-892.
|
[24] |
WANG T Q , WEN C K , JIN S ,et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J]. IEEE Wireless Communications Letters, 2019,8(2): 416-419.
|
[25] |
LU C , XU W , SHEN H ,et al. MIMO channel information feedback using deep recurrent network[J]. IEEE Communications Letters, 2019,23(1): 188-191.
|