1 |
Chu F , Zaniolo C . Fast and light boosting for adaptive mining of data streams. Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Sydney,Australia, 2004
|
2 |
孙岳, 毛国君, 刘旭 等. 基于多分类器的数据流中的概念漂移挖掘. 自动化学报, 2008,1(38): 93~96 Sun Y , Mao G J , Liu X , et al. Mining concept drifts from data streams based on multi-classifiers. ACTA Automatica Sinica, 2008,1(38): 93~96
|
3 |
Kolter J Z , Maloof M A . Using additive expert ensemble to cope with concept drift. Proceedings of the 22nd International Conference on Machine Learning, Bonn,Germany, 2005
|
4 |
琚春华, 陈之奇 . 一种挖掘概念漂移数据流的模糊积分集成分类方法. 山东大学学报(工学版), 2011,4(41): 44~48 Ju C H , Chen Z Q . A method of fuzzy integral ensemble classifiers for handling concept-drifting data streams. Journal of Shandong University of Technology, 2011,4(41): 44~48
|
5 |
Zhou Z H , Wu J X , Tang W . Ensembling neural networks: many could be better than all. Artificial Intelligence, 2002,137(12): 239~263
|
6 |
Bi Y X . The impact of diversity on the accuracy of evidential classifier ensembles. International Journal of Approximate Reasoning, 2012(53)
|
7 |
罗建宏, 陈德钊 . 兼顾正确率和差异性的自适应集成算法及应用. 浙江大学学报(工学版), 2011,45(1): 558~562 Luo J H , Chen D Z . Application of adaptive ensemble algorithm based on correctness and diversity. Journal of Zhejiang University(Engineering Science), 2011,45(1): 558~562
|
8 |
琚春华, 邹江波, 张芮 等. 基于MapReduce技术的并行集成分类算法. 电信科学, 2012,28(7): 40~46 Jun C H , Zou J B , Zhang R , et al. Parallel ensemble classification algorithm based on the MapReduce technology. Telecommunications Science, 2012,28(7): 40~46
|
9 |
孙博, 王建东, 陈海燕 等. 集成学习中的多样性度量. 控制与决策, 2014,29(3): 385~395 Sun B , Wang J D , Chen H Y , et al. Diversity measures in ensemble learning. Control and Decision, 2014,29(3): 385~395
|
10 |
Chu R , Wang M , Zeng X Q , et al. A new diverse measure in ensemble learning using unlabeled data. Proceedings of the 4th Int Conf on Computational Intelligence, Communication Systems and Networks, Washington,DC,USA, 2012
|
11 |
Li N , Yu Y , Zhou Z H . Diversity regularized ensemble pruning. Proceedings of the European Conf on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Athens,Greece, 2012
|
12 |
杨显飞, 张健沛, 杨静 . 数据流选择性集成的两阶段动态融合方法. 计算机工程, 2010,20(37): 180~184 Yang X F , Zhang J P , Yang J . Two-phase dynamic fusion method for data stream selective integration. Computer Engineering, 2010,20(37): 180~184
|
13 |
Sun S L , Zhang C S . Subspace ensembles for classification. Statistical Mechanics and Its Applications, 2007,385(1): 199~207
|
14 |
Opitz D , Maclin R . Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research, 1999(11)
|
15 |
Kuncheva L I , Whitaker C J . Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 2003,51(2): 181~207
|
16 |
Gupta L , Kota S , Molfese D L . Diversity-based selection of components for fusion classifiers. Proceedings of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina 2010:6304~6307
|
17 |
Minku L L , White A P , Yao X . The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Transactions on Knowledge and Data Engineering, 2010,22(5): 730~742
|
18 |
Grbovic M , Vucetic S . Tracking concept change with incremental boosting by minimization of the evolving exponential loss. Machine Learning and Knowledge Discovery in Databases, 2011,6911:516~532
|
19 |
邹江波 . 面向数据流挖掘的集成分类模型研究(硕士学位论文). 浙江工商大学, 2014 Zou J B . Reaserch on ensemble classifier model for data stream mining(master dissertation). Zhe Jiang Gong Shang University, 2013
|
20 |
杨长盛 . 基于成对差异性度量的选择性集成学习方法研究(硕士学位论文). 安徽大学, 2010 Yang C S . Selective ensemble learning algorithm based on pairwise diversity measures(master dissertation). An Hui Univeristy, 2010
|
21 |
Zhang P , Zhu X Q , Shi Y . Robust ensemble learning for mining noisy data streams. Decision Support Systems, 2011,50(2): 469~479
|