电信科学 ›› 2021, Vol. 37 ›› Issue (8): 66-76.doi: 10.11959/j.issn.1000-0801.2021193

• 研究与开发 • 上一篇    下一篇

面向人脸识别的口罩区域修复算法

李悦1, 钱亚冠1, 关晓惠2, 李蔚1, 王滨3, 顾钊铨4   

  1. 1 浙江科技学院大数据学院,浙江 杭州 310023
    2 浙江水利水电学院信息工程与艺术设计学院,浙江 杭州 310027
    3 杭州海康威视网络与信息安全实验室,浙江 杭州 310051
    4 广州大学网络空间先进技术研究院,广东 广州 510006
  • 修回日期:2021-08-11 出版日期:2021-08-20 发布日期:2021-08-01
  • 作者简介:李悦(1996− ),女,浙江科技学院硕士生,主要研究方向为深度学习、计算机视觉
    钱亚冠(1976− ),男,浙江科技学院副教授,主要研究方向为深度学习、人工智能安全和大数据处理
    关晓惠(1977− ),女,浙江水利水电学院副教授,主要研究方向为数字图像处理与模式识别
    李蔚(1978− ),女,浙江科技学院副教授,主要研究方向为科学计算、模式识别和计算机视觉中的机器学习问题
    王滨(1977− ),男,杭州海康威视网络与信息安全实验室研究员,主要研究方向为物联网安全、人工智能安全和网络安全
    顾钊铨(1989− ),男,广州大学网络空间先进技术研究院教授,主要研究方向为无线网络、分布式计算、大数据分析和人工智能安全
  • 基金资助:
    国家重点研发计划项目(2018YFB2100400);国家自然科学基金资助项目(61902082);浙江省公益技术应用研究项目(LGF20F020007)

Region inpainting algorithm of mouth-muffles for facial recognition

Yue LI1, Yaguan QIAN1, Xiaohui GUAN2, Wei LI1, Bin WANG3, Zhaoquan GU4   

  1. 1 School of Big Data Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
    2 College of Information Engineering &Art Design, Zhejiang University of Water Resources and Electric Power, Hangzhou 310027, China
    3 Network and Information Security Laboratory of Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310051, China
    4 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
  • Revised:2021-08-11 Online:2021-08-20 Published:2021-08-01
  • Supported by:
    The National Key R&D Program of China(2018YFB2100400);The National Natural Science Foundation of China(61902082);Applied Research Project of Public Welfare Technology of Zhejiang Province of China(LGF20F020007)

摘要:

遮挡下的人脸识别一直是现实场景中的一个难题。特别是新冠肺炎疫情爆发后,在机场、车站等需要鉴别入场人员身份信息的场所,口罩遮挡使得可供识别的面部特征大幅减少,原有的人脸识别算法准确率随之下降。对去除口罩遮挡进行了研究,提出了一个新的框架修复人脸,利用边缘生成网络还原遮挡区域的边缘,在此基础上再利用区域填充网络恢复被遮挡的人脸,同时保留身份信息。为提升模型的性能,提出空间加权对抗损失和身份一致性损失训练上述网络,并利用关键点信息,构建了两个戴口罩的人脸数据集。实验结果表明,恢复被口罩遮挡的人脸的图像使人脸识别算法 ArcFace 的准确率达到 98.39%,比直接采用ArcFace识别遮挡人脸提升了4.13%的准确率。

关键词: 口罩遮挡, 人脸识别, 边缘生成网络, 区域填充网络

Abstract:

Facial recognition under occlusion is a well-known difficult problem in real scenes.Especially after the outbreak of COVID-19, in airports, stations and other places that need to verify the identity of visitors, the mouth-muffle occlusion greatly reduces the facial features that can be important for identification, and the accuracy of face recognition algorithm decreases.Face de-occlusion was studied, and a novel framework was proposed to restore face, which used the edge generation network to generate edge maps.On this basis, the occluded region was restored by the region completion network while preserving identity information.In order to improve the performance, the spatial weighted adversarial loss and identity-preserving loss were introduced to train the above two networks.Then two face datasets with mouth-muffles were constructed by face landmarks.The experimental results show that the accuracy of facial recognition algorithm ArcFace on the face dataset restored by the proposed model was 98.39%, which was 4.13% higher than that of directly using ArcFace.

Key words: mouth-muffle occlusions, facial recognition, edge generation network, region completion network

中图分类号: 

No Suggested Reading articles found!