1 |
Bai Y B , Kobayashi H . Intrusion detection systems: technology and development. Proceedings of the 17th International Conference on Advanced Information Networking and Applications, Xi'an, China, 2003:27~29
|
2 |
Wright C , Monrose F , Masson G M . HMM profiles for network traffic classification. Proceedings of the ACM DMSEC, Washington DC, USA, 2004:9~15
|
3 |
Haffner P , Sen S , Spatscheck O , et al. ACAS: automated construction of application signatures. Proceedings of the ACM SIGCOMM, Philadelphia, USA, 2005:197~202
|
4 |
Moore A W , Zuev D . Internet traffic classification using Bayesian analysis techniques. Proceedings of the ACM SIGMETRICS, Banff, Alberta, Canada, 2005:50~60
|
5 |
Moore A , Papagiannaki K . Toward the accurate identification of network applications. Proceedings of the Passive&Active Measurement Workshop, Boston, USA, 2005
|
6 |
Williams N , Zander S , Armitage G . A prelimenary performance comparison of five machine learning algorithms for practical IP traffic flow comparison. ACM SIGCOMM Computer Communication Review, 2006,36(5):5~16
|
7 |
Zhang Y , Paxso V . Detecting back doors. Proceedings of the 9th USENIX Security Symposium, Denver, USA, 2000:157~170
|
8 |
Dreger H , Feldmann A , Mai M , et al. Dynamic application layer protocol analysis for network intrusion detection. Proceedings of the 15th USENIX Security Symposium, Vancouver, Canada, 2006:257~272
|
9 |
Early J , Brodley C , Rosenberg C . Behavioral authentication of server flows. Proceedings of the 19th Annual Computer Security Applications Conference, Las Vegas, USA, 2003:46~55
|
10 |
Karagiannis T , Papagiannaki K , Faloutsos M . BLINC:multilevel traffic classification in the dark. Proceedings of Applications, Technologies, Architectures, and Protocols for Computer Communications, Philadelphia, USA, 2005:229~240
|
12 |
Wright C V , Monrose F , Masson G M , et al. On inferring application protocol behaviors in encrypted network traffic. Journal of Machine Learning Research, 2006(7):2745~2769
|
|
Bernaille L , Teixeira R . Early recognition of encrypted applications. Proceedings of Passive and Active Measurement Conference(PAM), Louvainla-neuve, Belgium, 2007
|
13 |
Alshammari R , Nur Z H A . A flow based approach for SSH traffic Detection. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Montreal, Canada, 2007,296~301
|
4 |
赵博, 郭虹, 刘勤让 等. 基于加权累积和检验的加密流量盲识别算法. 软件学报 2013,24(6):1334~1345 Zhao B , Guo H , Liu Q R , et al. Protocol independent identification of encrypted traffic based on weighted cumulative sum test.. Journal of Software, 2013,24(6):1334~1345
|
15 |
何高峰, 杨明, 罗军舟 等. Tor 匿名通信流量在线识别方法. 软件学报 2013,24(3):540~556 He G F , Yang M , Luo J Z , et al. Online dentification of Tor anonymous communication traffic. Journal of Software, 2013,24(3):540~556
|
16 |
王炜, 程东年, 马海龙 . 基于趋势感知协议指纹的Skype 加密流量识别算法. 计算机应用研究 2014(8):64~71 Wang W , Cheng D N , Ma H L . Skype encrypted traffic identification based on trend-aware procotol fingerprints. Application Research of Computers, 2014(8):64~71
|
17 |
王炜, 程东年 . 基于M-序列检验的加密流量识别. 计算机工程与设计 2014,35(11):3712~3716 Wang W , Cheng D N . M-serial test based encrypted traffic identification. Computer Engineerin and Design, 2014,35(11):3712~3716
|
18 |
张宏莉, 鲁刚 . 分类不平衡协议流的机器学习算法评估与比较. 软件学报 2102,23(6):1500~1516 Zhang H L , Lu G . Machine learning algorithms classifying the imbalanced protocol flows: evaluation and comparison. ournal of Software, 2102,23(6):1500~1516
|
19 |
Chawla N V , Bowyer K W Hall L O , et al, SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002,16(1):321~357
|