Telecommunications Science ›› 2020, Vol. 36 ›› Issue (6): 79-89.doi: 10.11959/j.issn.1000-0801.2020164
• Research and Development • Previous Articles Next Articles
Ye OUYANG1,Aidong YANG1,Fanyu MENG2
Revised:
2020-06-03
Online:
2020-06-20
Published:
2020-06-18
CLC Number:
Ye OUYANG,Aidong YANG,Fanyu MENG. A game theory-assisted machine learning methodology for subscriber churn behaviors detection[J]. Telecommunications Science, 2020, 36(6): 79-89.
"
博弈轮数 | 项目 | 运营商 | ||
A | B | C | ||
第1轮 | 营销策略 | maxin/out | maxin/out | maxin/out |
综合评分 | 0.3 | -0.3 | 0 | |
第2轮 | 营销策略 | maxin/out | maxin/out | maxin |
综合评分 | 1.5 | 0.9 | -2.4 | |
第3轮 | 营销策略 | maxin/out | maxin/out | minout |
综合评分 | -0.1 | -0.7 | 0.8 | |
第4轮 | 营销策略 | maxin/out | maxin | maxin/out |
综合评分 | -0.3 | 0.9 | -0.6 | |
第5轮 | 营销策略 | maxin/out | maxin | maxin |
综合评分 | 0.9 | 2.1 | -3 | |
第6轮 | 营销策略 | maxin/out | maxin | minout |
综合评分 | -0.7 | 0.5 | 0.2 | |
第7轮 | 营销策略 | maxin/out | minout | maxin/out |
综合评分 | 0 | 0.3 | -0.3 | |
第8轮 | 营销策略 | maxin/out | minout | maxin |
综合评分 | 1.2 | 1.5 | -2.7 | |
第9轮 | 营销策略 | maxin/out | minout | minout |
综合评分 | -0.4 | -0.1 | 0.5 | |
第10轮 | 营销策略 | maxin | maxin/out | maxin/out |
综合评分 | -1.3 | 0.5 | 0.8 | |
第11轮 | 营销策略 | maxin | maxin/out | maxin |
综合评分 | -0.1 | 1.7 | -1.6 | |
第12轮 | 营销策略 | maxin | maxin/out | minout |
综合评分 | -1.7 | 0.1 | 1.6 | |
第13轮 | 营销策略 | maxin | maxin | maxin/out |
综合评分 | -1.9 | 1.7 | 0.2 | |
第14轮 | 营销策略 | maxin | maxin | maxin |
综合评分 | -0.7 | 2.9 | -2.2 | |
第15轮 | 营销策略 | maxin | maxin | minout |
综合评分 | -2.3 | 1.3 | 1 | |
第16轮 | 营销策略 | maxin | minout | maxin/out |
综合评分 | -1.6 | 1.1 | 0.5 | |
第17轮 | 营销策略 | maxin | minout | maxin |
综合评分 | -0.4 | 2.3 | -1.9 | |
第18轮 | 营销策略 | maxin | minout | minout |
综合评分 | -2 | 0.7 | 1.3 | |
第19轮 | 营销策略 | minout | maxin/out | maxin/out |
综合评分 | 0.7 | -0.5 | -0.2 | |
第20轮 | 营销策略 | minout | maxin/out | maxin |
综合评分 | 1.9 | 0.7 | -2.6 | |
第21轮 | 营销策略 | minout | maxin/out | minout |
综合评分 | 0.3 | -0.9 | 0.6 | |
第22轮 | 营销策略 | minout | maxin | maxin/out |
综合评分 | 0.1 | 0.7 | -0.8 | |
第23轮 | 营销策略 | minout | maxin | maxin |
综合评分 | 1.3 | 1.9 | -3.2 | |
第24轮 | 营销策略 | minout | maxin | minout |
综合评分 | -0.3 | 0.3 | 0 | |
第25轮 | 营销策略 | minout | minout | maxin/out |
综合评分 | 0.4 | 0.1 | -0.5 | |
第26轮 | 营销策略 | minout | minout | maxin |
综合评分 | 1.6 | 1.3 | -2.9 | |
第27轮 | 营销策略 | minout | minout | minout |
综合评分 | 0 | -0.3 | 0.3 |
[1] | MAICAS J P , POLO Y , SESE J . Reducing the level of switching costs in mobile communications:the case of mobile number portability[J]. Telecommunications Policy, 2009,33(9): 544-554. |
[2] | OTSUKA T , MITOMO H . User benefits and operator costs of mobile number portability in Japan and impact on market competitiveness[J]. Telecommunications Policy, 2013,37(4-5): 345-356. |
[3] | SHIN D H . A study of mobile number portability effects in the united states[J]. Telemat Inform, 2007,24(1): 1-14. |
[4] | BU?HLER S , DEWENTER R , HAUCAP J . Mobile number portability in Europe[J]. Telecommunications Policy, 2006,30(7): 385-399. |
[5] | FCC. Wireless local number portability (WLNP)[EB]. 2016. |
[6] | China Mobile. Announcements[EB]. 2020. |
[7] | China Telecom. Investor calendar[EB]. 2020. |
[8] | China Unicom. Presentations & Webcasts[EB]. 2020. |
[9] | SINA. Operators will cancel the unlimited packages.Telecom will no longer reach the speed limit from next month[EB]. 2019. |
[10] | BERSON A , SMITH S , THEARLING K . Building data mining applications for CRM[J]. 1999. |
[11] | GARC′IA-MARI?NOSO B , SUáREZ D . Switching mobile operators:evidence about consumers behavior from a longitudinal survey[J]. Telecommunications Policy, 2019,43(5): 426-433. |
[12] | GERPOTT T J , RAMS W , SCHINDLER A . Customer retention,loyalty,and satisfaction in the German mobile cellular telecommunications market[J]. Telecommunications Policy, 2001,25(4): 249-269. |
[13] | LIANG D , MA Z , QI L . Service quality and customer switching behavior in China’s mobile phone service sector[J]. Journal of Business Research, 2013,66(8): 1161-1167. |
[14] | BACKIEL A , BAESENS B , CLAESKENS G . Predicting time-to-churn of prepaid mobile telephone customers using social network analysis[J]. Technological Forecasting and Social Change, 2016,67(9): 1135-1145. |
[15] | NITZAN I , LIBAI B . Social effects on customer retention[J]. Journal of Marketing, 2011,75(6): 24-38. |
[16] | YESHWANTH V , RAJ V V , SARAVANAN M . Evolutionary churn prediction in mobile networks using hybrid learning[C]// Proceedings of Twenty-Fourth International FLAIRS Conference. Palo Alto:AAAI Press, 2011. |
[17] | ZHANG R , ZHU Q . A game-theoretic defense against data poisoning attacks in distributed support vector machines[C]// Proceedings of 2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2017: 4582-4587. |
[18] | SLADE M E . Vancouver’s gasoline-price wars:an empirical exercise in uncovering supergame strategies[J]. Rev.Econmic Studies, 1992,59(2): 257-276. |
[19] | FERRERO R , SHAHIDEHPOUR S , RAMESH V . Transaction analysis in deregulated power systems using game theory[J]. IEEE Transactions on Power Systems, 1997,12(3): 1340-1347. |
[20] | MAGALONI B . The game of electoral fraud and the ousting of authoritarian rule[J]. American Journal Politcal Science, 2010,54(3): 751-765. |
[21] | ADEBIYI S O , OYATOYE E O , MOJEKWU J N . Predicting customer churn and retention rates in Nigeria’s mobile telecommunication industry using Markov chain modeling[J]. Acta Universitatis Sapientiae,Economics and Business, 2015,3(1): 67-80. |
[22] | CHEN T , GUESTRIN C . XGBoost:a scalable tree boosting system[C]// Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2016: 785-794. |
[23] | DORFFNER G , . Neural networks for time series processing[C]// Proceedings of Neural Network World.[S.l.:s.n]. 1996. |
[24] | CZAJKOWSKI M , SOBOLEWSKI M . How much do switching costs and local network effects contribute to consumer lock-in in mobile telephony?[J]. Telecommunications Policy, 2016,40(9): 855-869. |
[1] | Zehua GUO, Haowen ZHU, Tongwen XU. Network modal innovation for distributed machine learning [J]. Telecommunications Science, 2023, 39(6): 44-51. |
[2] | Yaqiong LIU, Zhe LYU, Yafei ZHAO, Guochu SHOU. A survey on AI techniques applied in the satellite communication/satellite Internet field [J]. Telecommunications Science, 2023, 39(2): 10-24. |
[3] | Ruihong JIANG, Yizhe FENG, Yaohua SUN, Haina ZHENG. A survey on networking key technologies for LEO satellite network [J]. Telecommunications Science, 2023, 39(2): 37-47. |
[4] | Jianwu ZHANG, Yanjun AN, Huangyan DENG. A survey on DNS attack detection and security protection [J]. Telecommunications Science, 2022, 38(9): 1-17. |
[5] | Lushan ZOU, Xiaowen HUANG, Jingmin YANG, Yifeng ZHENG, Guanglin ZHANG, Wenjie ZHANG. Review on resources allocation and pricing methods in mobile edge computing [J]. Telecommunications Science, 2022, 38(3): 113-132. |
[6] | Zhichao ZHOU, Yi FENG, Xiaohan XIA, Yuyao FENG, Chao CAI, Jiahui QIU, Lihui YANG, Yunxiao WU. Outdoor location scheme with fingerprinting based on machine learning of mobile cellular network [J]. Telecommunications Science, 2021, 37(8): 85-95. |
[7] | Su DIAO, Cheng JIANG. Trend of mobile communication market pattern under the reform of industry co-competition [J]. Telecommunications Science, 2021, 37(3): 154-161. |
[8] | Xiang LI,Yuan LI,Zifei ZHANG,Zhe YANG. A density clustering-based network performance failure big data analysis algorithm [J]. Telecommunications Science, 2020, 36(9): 51-58. |
[9] | Ziyu XIAO. A review of key technologies for the future of the 2030 network——Beyond 5G [J]. Telecommunications Science, 2020, 36(9): 114-121. |
[10] | Yaxing QIU,Xidong WANG,Sen BIAN,Lei YUE. Load balancing based on clustering analysis and deep learning for multi-frequency and multi-mode network [J]. Telecommunications Science, 2020, 36(7): 156-162. |
[11] | Feng LIN,Liujing XU,Xiaohua CHEN,Weiqiang QI,Ke CHEN,Tiantian ZHU. Method of Webshell detection based on multi-view feature fusion [J]. Telecommunications Science, 2020, 36(6): 125-132. |
[12] | Jiantao SHENG,Maofei CHEN,Dongxin LIU,Laifu WANG,Guoshui SHI,Huamin JIN. Detection of malicious domain name based on a classifier combination [J]. Telecommunications Science, 2020, 36(5): 47-55. |
[13] | Tao PANG,Haihua QIU,Biying PAN. Research on artificial intelligence key technologies of mobile terminal [J]. Telecommunications Science, 2020, 36(5): 145-151. |
[14] | Qizhu ZHONG. Research and application of VoLTE video call quality based on machine learning [J]. Telecommunications Science, 2020, 36(3): 156-165. |
[15] | Zishan LIU,Qiang CHENG,Bo LV. A survey on key technologies of privacy protection for machine learning [J]. Telecommunications Science, 2020, 36(11): 18-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|