[1] |
JIA W L , WANG H , CHEN M H ,et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning[J]. arXiv:2005.00223, 2020.
|
[2] |
JUMPER J , EVANS R , PRITZEL A ,et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,596(7873): 583-589.
|
[3] |
欧阳晔, 王立磊, 杨爱东 ,等. 通信人工智能的下一个十年[J]. 电信科学, 2021,37(3): 1-36.
|
|
OUYANG Y , WANG L L , YANG A D ,et al. Next decade of telecommunications artificial intelligence[J]. Telecommunica-tions Science, 2021,37(3): 1-36.
|
[4] |
华为技术有限公司. 华为自动驾驶网络解决方案白皮书[R]. 2020.
|
|
Huawei Technologies Co.,Ltd.. Huawei's white paper on auto-nomous driving network solutions[R]. 2020.
|
[5] |
中兴通讯股份有限公司. 中兴自主进化网络白皮书[R]. 2020.
|
|
ZTE Technology Co.,Ltd.. ZTE’s white paper on autonomous evolution network[R]. 2020.
|
[6] |
邓超, 王斌, 朱琳 ,等. 人工智能在电信运营中的典型应用实践[J]. 信息通信技术与政策, 2019(7): 34-38.
|
|
DENG C , WANG B , ZHU L ,et al. Typical applications of ar-tificial intelligence in telecom operation[J]. Information and Communications Technology and Policy, 2019(7): 34-38.
|
[7] |
冯俊兰 . 5G自身智能化及赋能智能产业之路[J]. 电信工程技术与标准化, 2020,33(1): 1-8.
|
|
FENG J L . Intelligent 5G network and 5G+AI applications[J]. Tel-ecom Engineering Technics and Standardization, 2020,33(1): 1-8.
|
[8] |
程强, 刘姿杉 . 数据驱动的智能电信网络[J]. 中兴通讯技术, 2020,26(5): 53-56.
|
|
CHENG Q , LIU Z S . Data empowered intelligent communica-tion networks[J]. ZTE Technology Journal, 2020,26(5): 53-56.
|
[9] |
RATNER A , BACH S H , EHRENBERG H ,et al. Snorkel:rapid training data creation with weak supervision[J]. The VLDB Journal:Very Large Data Bases:a Publication of the VLDB Endowment, 2020,29(2): 709-730.
|
[10] |
BRECK E , CAI S Q , NIELSEN E ,et al. The ML test score:a rubric for ML production readiness and technical debt reduction[C]// Proceedings of 2017 IEEE International Conference on Big Data (Big Data). Piscataway:IEEE Press, 2017: 1123-1132.
|
[11] |
CNCF. Cloud Native Interactive Landscape[EB]. 2021.
|
[12] |
Kubeflow. Kubeflow Overview[EB]. 2021.
|
[13] |
Github. Volcano[EB]. 2021.
|
[14] |
Kubernetes. Scheduling Framework[EB]. 2021.
|
[15] |
BROWN T B , MANN B , RYDER N ,et al. Language models are few-shot learners[J]. arXiv:2005.14165, 2020.
|
[16] |
Horovod. Elastic Horovod[EB]. 2021.
|
[17] |
GIBIANSKY A . Bringing HPC techniques to deep learning[EB]. 2021.
|
[18] |
HOWARD A G , ZHU M L , CHEN B ,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB]. 2017:arXiv:1704.04861, 2017.
|
[19] |
HAN S , MAO H Z , DALLY W . Deep compression:compressing deep neural network with pruning,trained quantization and huffman coding[J]. ICLR. 2015.
|
[20] |
INTEL Accelerate lower numerical precision inference with Intel? deep learning boost[EB]. 2021.
|
[21] |
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. Computer Science, 2015,14(7): 38-39.
|
[22] |
LI M Z , LIU Y , LIU X Y ,et al. The deep learning compiler:a comprehensive survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2021,32(3): 708-727.
|
[23] |
Github KFServing:predict on an InferenceService with TensorFlow model[EB]. 2021.
|
[24] |
TensorFlow. TFServing:train and serve a TensorFlow model with TensorFlow serving[EB]. 2021.
|
[25] |
Google Cloud. MLOps:continuous delivery and automated pipelines in machine learning[EB]. 2021.
|
[26] |
Rancher. K3s[EB]. 2021.
|
[27] |
GitHub. KubeEdge[EB]. 2021.
|
[28] |
Gitee. OpenYurt[EB]. 2021.
|
[29] |
刘腾飞, 李奥 . Acumos:一种人工智能开放平台[J]. 邮电设计技术, 2018(12): 46-50.
|
|
LIU T F , LI A . Acumos—an artificial intelligence open plat-form[J]. Designing Techniques of Posts and Telecommunica-tions, 2018(12): 46-50.
|